School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam.
Langmuir. 2024 Mar 19;40(11):6051-6064. doi: 10.1021/acs.langmuir.4c00300. Epub 2024 Mar 4.
Preconcentration of biomolecules based on ion concentration polarization (ICP) has been splendidly applied to various biomedical and chemical processes. However, in many circumstances, biomolecule preconcentration could not occur due to the lack of full studies on the preconcentration mechanism, especially on the effect of microchannel dimensions. In this work, we provide analytical studies on the critical dimensions (minimum and maximum) of microchannels for the preconcentration of biomolecules. These formulas are verified with the numerical results by fully solving the coupled governing equations: Poisson-Nernst-Planck and Navier-Stokes experiments with appropriate boundary conditions and assumptions. In addition, we examine the impact of operational parameters, such as electric potentials and critical external pressures, on the formation of the preconcentration. Moreover, two important results are provided for the first time, including the position of the preconcentrated biomolecule region and the concentration enhancement factor of the biomolecules. These analytical and numerical results are consistent with experimental observations and, therefore, could provide sharp insight into the mechanism of biomolecule preconcentration and give useful guidelines to better design and optimize ICP-based microfluidic preconcentration devices.
基于离子浓度极化 (ICP) 的生物分子预浓缩已被出色地应用于各种生物医学和化学过程中。然而,在许多情况下,由于对预浓缩机制缺乏全面研究,特别是对微通道尺寸的影响缺乏全面研究,生物分子预浓缩无法发生。在这项工作中,我们对生物分子预浓缩的微通道临界尺寸(最小和最大)进行了分析研究。这些公式通过完全求解耦合控制方程并结合适当的边界条件和假设,利用数值结果进行了验证:泊松-纳斯特-普朗克方程和纳维-斯托克斯方程。此外,我们研究了操作参数(如电势和临界外部压力)对预浓缩形成的影响。此外,首次提供了两个重要结果,包括预浓缩生物分子区域的位置和生物分子的浓度增强因子。这些分析和数值结果与实验观察结果一致,因此可以深入了解生物分子预浓缩的机制,并为更好地设计和优化基于 ICP 的微流控预浓缩设备提供有用的指导。