Zhang Shuai, Wang Mingming, Xiao Liujun, Guo Xiaowei, Zheng Jinyang, Zhu Biao, Luo Zhongkui
Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2313842121. doi: 10.1073/pnas.2313842121. Epub 2024 Mar 4.
Soil organic carbon (SOC) mineralization is a key component of the global carbon cycle. Its temperature sensitivity Q (which is defined as the factor of change in mineralization with a 10 °C temperature increase) is crucial for understanding the carbon cycle-climate change feedback but remains uncertain. Here, we demonstrate the universal control of carbon quality-availability tradeoffs on Q. When carbon availability is not limited, Q is controlled by carbon quality; otherwise, substrate availability controls Q. A model driven by such quality-availability tradeoffs explains 97% of the spatiotemporal variability of Q in incubations of soils across the globe and predicts a global Q of 2.1 ± 0.4 (mean ± one SD) with higher Q in northern high-latitude regions. We further reveal that global Q is predominantly governed by the mineralization of high-quality carbon. The work provides a foundation for predicting SOC dynamics under climate and land use changes which may alter soil carbon quality and availability.
土壤有机碳(SOC)矿化是全球碳循环的关键组成部分。其温度敏感性Q(定义为温度升高10°C时矿化变化的因子)对于理解碳循环 - 气候变化反馈至关重要,但仍不确定。在此,我们证明了碳质量 - 有效性权衡对Q的普遍控制。当碳有效性不受限时,Q由碳质量控制;否则,底物有效性控制Q。由这种质量 - 有效性权衡驱动的模型解释了全球土壤培养中Q的时空变异性的97%,并预测全球Q为2.1±0.4(平均值±一个标准差),在北半球高纬度地区Q更高。我们进一步揭示,全球Q主要由高质量碳的矿化控制。这项工作为预测在可能改变土壤碳质量和有效性的气候和土地利用变化下的土壤有机碳动态提供了基础。