Computational Imaging Group for MR Diagnostics and Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.
Department of Radiotherapy, Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
Magn Reson Med. 2024 Aug;92(2):618-630. doi: 10.1002/mrm.30074. Epub 2024 Mar 5.
MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times. A highly optimized, GPU-compatible Bloch simulation toolbox is developed as part of this work that can be utilized for other quantitative MRI techniques as well.
The Julia programming language was used to develop a flexible yet highly performant and GPU-compatible Bloch simulation toolbox called BlochSimulators.jl. The runtime performance of the toolbox is benchmarked against other Bloch simulation toolboxes. Furthermore, a (partially matrix-free) modification of a previously presented (matrix-free) MR-STAT reconstruction algorithm is proposed and implemented using the Julia language on GPU hardware. The proposed algorithm is combined with BlochSimulators.jl and the resulting MR-STAT reconstruction times on GPU hardware are compared to previously presented MR-STAT reconstruction times.
The BlochSimulators.jl package demonstrates superior runtime performance on both CPU and GPU hardware when compared to other existing Bloch simulation toolboxes. The GPU-accelerated partially matrix-free MR-STAT reconstruction algorithm, which relies on BlochSimulators.jl, allows for reconstructions of 68 seconds per two-dimensional (2D slice).
By combining the proposed Bloch simulation toolbox and the partially matrix-free reconstruction algorithm, 2D MR-STAT reconstructions can be performed in the order of one minute on a modern GPU card. The Bloch simulation toolbox can be utilized for other quantitative MRI techniques as well, for example for online dictionary generation for MR Fingerprinting.
MR-STAT 是一种相对较新的多参数定量 MRI 技术,通过求解大规模非线性优化问题来获得定量参数图。管理重建时间是 MR-STAT 的主要挑战之一。在这项工作中,我们利用 GPU 硬件来减少 MR-STAT 重建时间。作为这项工作的一部分,开发了一个高度优化的、与 GPU 兼容的 Bloch 模拟工具箱,它也可以用于其他定量 MRI 技术。
使用 Julia 编程语言开发了一个灵活的、高性能的、与 GPU 兼容的 Bloch 模拟工具箱,称为 BlochSimulators.jl。该工具箱的运行时性能与其他 Bloch 模拟工具箱进行了基准测试。此外,提出并实现了一种(部分无矩阵)对以前提出的(无矩阵)MR-STAT 重建算法的修改,该算法使用 Julia 语言在 GPU 硬件上实现。提出的算法与 BlochSimulators.jl 相结合,在 GPU 硬件上的结果与以前提出的 MR-STAT 重建时间进行了比较。
与其他现有的 Bloch 模拟工具箱相比,BlochSimulators.jl 包在 CPU 和 GPU 硬件上都表现出了优越的运行时性能。依赖于 BlochSimulators.jl 的 GPU 加速部分无矩阵 MR-STAT 重建算法允许对二维(2D 切片)进行 68 秒的重建。
通过结合所提出的 Bloch 模拟工具箱和部分无矩阵重建算法,在现代 GPU 卡上可以在一分钟左右的时间内完成 2D MR-STAT 重建。Bloch 模拟工具箱也可以用于其他定量 MRI 技术,例如用于 MR 指纹识别的在线字典生成。