Suppr超能文献

无监督学习的感知特征组合。

Unsupervised learning of perceptual feature combinations.

机构信息

Department for Computational Neuroscience, Third Physics Institute, University of Göttingen, Göttingen, Germany.

Vytautas Magnus University, Faculty of Informatics, Kaunas, Lithuania.

出版信息

PLoS Comput Biol. 2024 Mar 5;20(3):e1011926. doi: 10.1371/journal.pcbi.1011926. eCollection 2024 Mar.

Abstract

In many situations it is behaviorally relevant for an animal to respond to co-occurrences of perceptual, possibly polymodal features, while these features alone may have no importance. Thus, it is crucial for animals to learn such feature combinations in spite of the fact that they may occur with variable intensity and occurrence frequency. Here, we present a novel unsupervised learning mechanism that is largely independent of these contingencies and allows neurons in a network to achieve specificity for different feature combinations. This is achieved by a novel correlation-based (Hebbian) learning rule, which allows for linear weight growth and which is combined with a mechanism for gradually reducing the learning rate as soon as the neuron's response becomes feature combination specific. In a set of control experiments, we show that other existing advanced learning rules cannot satisfactorily form ordered multi-feature representations. In addition, we show that networks, which use this type of learning always stabilize and converge to subsets of neurons with different feature-combination specificity. Neurons with this property may, thus, serve as an initial stage for the processing of ecologically relevant real world situations for an animal.

摘要

在许多情况下,动物对感知的共现做出反应具有行为相关性,尽管这些特征本身可能没有意义。因此,尽管这些特征可能具有不同的强度和出现频率,但动物学习这些特征组合至关重要。在这里,我们提出了一种新的无监督学习机制,该机制在很大程度上独立于这些关联,并允许网络中的神经元对不同的特征组合实现特异性。这是通过一种新的基于相关性的(Hebbian)学习规则实现的,该规则允许线性权重增长,并与一种机制相结合,一旦神经元的反应具有特征组合特异性,就会逐渐降低学习率。在一组对照实验中,我们表明,其他现有的高级学习规则不能令人满意地形成有序的多特征表示。此外,我们表明,使用这种类型学习的网络总是会稳定并收敛到具有不同特征组合特异性的神经元子集。因此,具有这种特性的神经元可以作为动物处理生态相关现实情况的初始阶段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/10942261/62ecc118d245/pcbi.1011926.g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验