Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Commun. 2024 Mar 5;15(1):1989. doi: 10.1038/s41467-024-45679-0.
Whenever a visual scene is cast onto the retina, much of it will appear degraded due to poor resolution in the periphery; moreover, optical defocus can cause blur in central vision. However, the pervasiveness of blurry or degraded input is typically overlooked in the training of convolutional neural networks (CNNs). We hypothesized that the absence of blurry training inputs may cause CNNs to rely excessively on high spatial frequency information for object recognition, thereby causing systematic deviations from biological vision. We evaluated this hypothesis by comparing standard CNNs with CNNs trained on a combination of clear and blurry images. We show that blur-trained CNNs outperform standard CNNs at predicting neural responses to objects across a variety of viewing conditions. Moreover, blur-trained CNNs acquire increased sensitivity to shape information and greater robustness to multiple forms of visual noise, leading to improved correspondence with human perception. Our results provide multi-faceted neurocomputational evidence that blurry visual experiences may be critical for conferring robustness to biological visual systems.
每当视觉场景投射到视网膜上时,由于周边分辨率较差,其中大部分会显得退化; 此外,光学散焦会导致中央视力模糊。然而,在卷积神经网络 (CNN) 的训练中,通常会忽略输入模糊或退化的普遍性。我们假设,缺乏模糊的训练输入可能导致 CNN 过度依赖对象识别的高空间频率信息,从而导致与生物视觉的系统偏差。我们通过将标准 CNN 与在清晰和模糊图像组合上训练的 CNN 进行比较来评估这一假设。我们表明,在预测各种观察条件下物体的神经反应方面,模糊训练的 CNN 优于标准 CNN。此外,模糊训练的 CNN 对形状信息的敏感性增加,对多种形式的视觉噪声的鲁棒性增强,从而提高了与人类感知的一致性。我们的研究结果提供了多方面的神经计算证据,表明模糊的视觉体验对于赋予生物视觉系统鲁棒性可能至关重要。