Dilernia Nicole J, Woodcock Stephen, Camp Emma F, Hughes David J, Kühl Michael, Suggett David J
Climate Change Cluster University of Technology Sydney (UTS) Ultimo New South Wales Australia.
School of Mathematical and Physical Sciences University of Technology Sydney (UTS) Ultimo New South Wales Australia.
Ecol Evol. 2024 Mar 5;14(3):e11100. doi: 10.1002/ece3.11100. eCollection 2024 Mar.
Oxygen (O) availability is essential for healthy coral reef functioning, yet how continued loss of dissolved O via ocean deoxygenation impacts performance of reef building corals remains unclear. Here, we examine how intra-colony spatial geometry of important Great Barrier Reef (GBR) coral species may influence variation in hypoxic thresholds for upregulation, to better understand capacity to tolerate future reductions in O availability. We first evaluate the application of more streamlined models used to parameterise Hypoxia Response Curve data, models that have been used historically to identify variable oxyregulatory capacity. Using closed-system respirometry to analyse O drawdown rate, we show that a two-parameter model returns similar outputs as previous 12th-order models for descriptive statistics such as the average oxyregulation capacity (T) and the ambient O level at which the coral exerts maximum regulation effort (P), for diverse species. Following an experiment to evaluate whether stress induced by coral fragmentation for respirometry affected O drawdown rate, we subsequently identify differences in hypoxic response for the interior and exterior colony locations for the species , cf. and . Average regulation capacity across species was greater (0.78-1.03 ± SE 0.08) at the colony interior compared with exterior (0.60-0.85 ± SE 0.08). Moreover, P occurred at relatively low O of <30% (±1.24; SE) air saturation for all species, across the colony. When compared against ambient O availability, these factors corresponded to differences in mean intra-colony oxyregulation, suggesting that lower variation in dissolved O corresponds with higher capacity for oxyregulation. Collectively, our data show that intra-colony spatial variation affects coral oxyregulation hypoxic thresholds, potentially driving differences in oxyregulatory capacity.
氧气(O)的可利用性对于健康的珊瑚礁功能至关重要,但通过海洋脱氧导致溶解氧持续流失如何影响造礁珊瑚的性能仍不清楚。在这里,我们研究了大堡礁(GBR)重要珊瑚物种的群体内空间几何结构如何影响上调的缺氧阈值变化,以更好地了解其耐受未来氧气可利用性降低的能力。我们首先评估了用于参数化缺氧反应曲线数据的更简化模型的应用,这些模型过去曾用于识别可变的氧调节能力。使用封闭系统呼吸测定法分析氧气消耗率,我们发现对于不同物种,双参数模型得出的描述性统计输出与之前的十二阶模型类似,如平均氧调节能力(T)和珊瑚发挥最大调节作用时的环境氧水平(P)。在评估用于呼吸测定的珊瑚碎片化所诱导的应激是否影响氧气消耗率的实验之后,我们随后确定了该物种群体内部和外部位置在缺氧反应上的差异,参照 和 。与群体外部(0.60 - 0.85 ± 标准误0.08)相比,群体内部各物种的平均调节能力更大(0.78 - 1.03 ± 标准误0.08)。此外,对于所有物种,P在整个群体中出现在相对较低的氧气水平,即空气饱和度<30%(±1.24;标准误)时。与环境氧气可利用性相比,这些因素对应于群体内平均氧调节的差异,表明溶解氧的较低变化对应着较高的氧调节能力。总体而言,我们的数据表明群体内空间变化会影响珊瑚的氧调节缺氧阈值,可能导致氧调节能力的差异。