Suppr超能文献

利用公共卫生数据和机器学习模型增强对2019冠状病毒病病例的预测

Enhanced SARS-CoV-2 case prediction using public health data and machine learning models.

作者信息

Price Bradley S, Khodaverdi Maryam, Hendricks Brian, Smith Gordon S, Kimble Wes, Halasz Adam, Guthrie Sara, Fraustino Julia D, Hodder Sally L

机构信息

Department of Management Information Systems, West Virginia University, Morgantown, WV 26505, United States.

West Virginia Clinical and Translational Science Institute, Morgantown, WV 26506, United States.

出版信息

JAMIA Open. 2024 Feb 10;7(1):ooae014. doi: 10.1093/jamiaopen/ooae014. eCollection 2024 Apr.

Abstract

OBJECTIVES

The goal of this study is to propose and test a scalable framework for machine learning (ML) algorithms to predict near-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases by incorporating and evaluating the impact of real-time dynamic public health data.

MATERIALS AND METHODS

Data used in this study include patient-level results, procurement, and location information of all SARS-CoV-2 tests reported in West Virginia as part of their mandatory reporting system from January 2021 to March 2022. We propose a method for incorporating and comparing widely available public health metrics inside of a ML framework, specifically a long-short-term memory network, to forecast SARS-CoV-2 cases across various feature sets.

RESULTS

Our approach provides better prediction of localized case counts and indicates the impact of the dynamic elements of the pandemic on predictions, such as the influence of the mixture of viral variants in the population and variable testing and vaccination rates during various eras of the pandemic.

DISCUSSION

Utilizing real-time public health metrics, including estimated from multiple SARS-CoV-2 variants, vaccination rates, and testing information, provided a significant increase in the accuracy of the model during the Omicron and Delta period, thus providing more precise forecasting of daily case counts at the county level. This work provides insights on the influence of various features on predictive performance in rural and non-rural areas.

CONCLUSION

Our proposed framework incorporates available public health metrics with operational data on the impact of testing, vaccination, and current viral variant mixtures in the population to provide a foundation for combining dynamic public health metrics and ML models to deliver forecasting and insights in healthcare domains. It also shows the importance of developing and deploying ML frameworks in rural settings.

摘要

目的

本研究的目标是提出并测试一种可扩展的机器学习(ML)算法框架,通过纳入和评估实时动态公共卫生数据的影响来预测近期严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病例。

材料与方法

本研究中使用的数据包括西弗吉尼亚州作为其强制报告系统一部分报告的2021年1月至2022年3月期间所有SARS-CoV-2检测的患者层面结果、采购和位置信息。我们提出一种方法,在ML框架(具体为长短期记忆网络)内纳入并比较广泛可用的公共卫生指标,以预测各种特征集下的SARS-CoV-2病例。

结果

我们的方法能更好地预测局部病例数,并表明疫情动态因素对预测的影响,例如人群中病毒变体混合情况以及疫情不同阶段变化的检测和疫苗接种率的影响。

讨论

利用实时公共卫生指标,包括来自多种SARS-CoV-2变体的估计值、疫苗接种率和检测信息,在奥密克戎和德尔塔时期显著提高了模型的准确性,从而能更精确地预测县级每日病例数。这项工作提供了关于各种特征对农村和非农村地区预测性能影响的见解。

结论

我们提出的框架将可用的公共卫生指标与关于检测、疫苗接种和人群中当前病毒变体混合影响的运营数据相结合,为在医疗领域结合动态公共卫生指标和ML模型以提供预测和见解奠定了基础。它还显示了在农村地区开发和部署ML框架的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1c/10913390/446c321ca63a/ooae014f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验