Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China.
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
ACS Appl Mater Interfaces. 2024 Mar 20;16(11):13496-13508. doi: 10.1021/acsami.3c17212. Epub 2024 Mar 6.
Atherosclerosis is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques, while macrophages as key players in plaque progression and destabilization are promising targets for atherosclerotic plaque imaging. Contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a powerful noninvasive imaging technique for the evaluation of atherosclerotic plaques within arterial walls. However, the visualization of macrophages within atherosclerotic plaques presents considerable challenges due to the intricate pathophysiology of the disease and the dynamic behavior of these cells. Biocompatible ferrite nanoparticles with diverse surface ligands possess the potential to exhibit distinct relaxivity and cellular affinity, enabling improved imaging capabilities for macrophages in atherosclerosis. In this work, we report macrophage-affinity nanoparticles for magnetic resonance imaging (MRI) of atherosclerosis via tailoring nanoparticle surface coating. The ultrasmall zinc ferrite nanoparticles (ZnFeO) as contrast agents were synthesized and modified with dopamine, 3,4-dihydroxyhydrocinnamic acid, and phosphorylated polyethylene glycol to adjust their surface charges to be positively, negatively, and neutrally charged, respectively. In vitro MRI evaluation shows that the relaxivity for different surface charged ZnFeO nanoparticles was three higher than that of the clinically used Gd-DTPA. Furthermore, in vivo atherosclerotic plaque MR imaging indicates that positively charged ZnFeO showed superior MRI efficacy on carotid atherosclerosis than the other two, which is ascribed to high affinity to macrophages of positively charged nanoparticles. This work provides improved diagnostic capability and a better understanding of the molecular imaging of atherosclerosis.
动脉粥样硬化是一种慢性炎症性疾病,其特征是形成动脉粥样硬化斑块,而巨噬细胞作为斑块进展和不稳定的关键参与者,是动脉粥样硬化斑块成像的有前途的靶点。对比增强磁共振成像(CE-MRI)已成为评估动脉壁内动脉粥样硬化斑块的一种强大的无创成像技术。然而,由于疾病的复杂病理生理学和这些细胞的动态行为,在动脉粥样硬化斑块内可视化巨噬细胞仍然具有相当大的挑战。具有不同表面配体的生物相容性铁酸盐纳米颗粒具有表现出不同弛豫率和细胞亲和力的潜力,从而能够改善动脉粥样硬化中巨噬细胞的成像能力。在这项工作中,我们通过调整纳米颗粒表面涂层,报告了用于动脉粥样硬化磁共振成像(MRI)的巨噬细胞亲和性纳米颗粒。超小锌铁氧体纳米颗粒(ZnFeO)作为对比剂被合成并修饰为多巴胺、3,4-二羟基肉桂酸和磷酸化聚乙二醇,以分别调整它们的表面电荷为正、负和中性。体外 MRI 评估表明,不同表面带电 ZnFeO 纳米颗粒的弛豫率比临床使用的 Gd-DTPA 高 3 倍。此外,体内动脉粥样硬化斑块磁共振成像表明,带正电荷的 ZnFeO 在颈动脉粥样硬化中的 MRI 效果优于另外两种,这归因于带正电荷的纳米颗粒对巨噬细胞的高亲和力。这项工作提供了改进的诊断能力,并更好地了解动脉粥样硬化的分子成像。
ACS Appl Mater Interfaces. 2024-3-20
J Nanobiotechnology. 2016-1-16
Nanotheranostics. 2020
J Nanobiotechnology. 2018-11-15
Int J Nanomedicine. 2018-11-23
Fundam Res. 2025-1-2
J Funct Biomater. 2024-12-24