Zhou Shijie, Yang Yusen, Shen Tianyao, Yin Pan, Wang Lei, Ren Zhen, Zheng Lirong, Wang Bin, Yan Hong, Wei Min
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, P. R. China.
ACS Appl Mater Interfaces. 2024 Mar 20;16(11):13685-13696. doi: 10.1021/acsami.3c17806. Epub 2024 Mar 7.
Chemoselective hydrogenation of carbonyl in unsaturated aldehydes is a significant process in the chemical industry, in which the development of aqueous-phase reaction systems as a substitution to organic ones is challenging. Herein, we report Ir atomic cluster catalysts anchored onto WO nanorods a reduction treatment at various temperatures (denoted as Ir/WO-T, = 200, 300, 400, and 500 °C), which accelerates the chemoselective hydrogenation of carbonyl groups in aqueous solutions. The optimal catalyst Ir/WO-300 exhibits exceptional activity (TOF value: 1313.7 min) and chemoselectivity toward cinnamaldehyde (CAL) hydrogenation to cinnamyl alcohol (COL) (yield: ∼98.0%) in water medium, which is, to the best of our knowledge, the highest level compared with previously reported heterogeneous catalysts in liquid-phase reaction. Ac-HAADF-STEM, XAFS, and XPS verify the formation of interface structure (Ir-O-W (0 ≤ δ ≤ 4); O denotes oxygen vacancy) induced by metal-support interaction and the largest concentration of interfacial Ir (Ir) in Ir/WO-300. studies (Raman, FT-IR), isotopic labeling measurements combined with DFT calculations substantiate that the hydrogenation of the C=O group consists of two pathways: water-mediated hydrogenation (predominant) and direct hydrogenation H dissociation (secondary). In the former case, W-O site accelerates the activation adsorption of HO, while Ir site facilitates the H-H bond cleavage of H and Ir promotes the CAL adsorption. HO molecule, as the source of hydrogen species, participates directly in the hydrogenation of the carbonyl group through a hydrogen-bonded network, with a largely reduced energy barrier relative to the H dissociation path. This work demonstrates a green catalytic route that breaks the activity-selectivity trade-off toward the selective hydrogenation of unsaturated aldehydes, which shows great potential in heterogeneous catalysis.
不饱和醛中羰基的化学选择性氢化是化学工业中的一个重要过程,其中开发水相反应体系以替代有机相反应体系具有挑战性。在此,我们报道了负载在 WO 纳米棒上并在不同温度下进行还原处理的 Ir 原子簇催化剂(表示为 Ir/WO-T,T = 200、300、400 和 500 °C),该催化剂加速了水溶液中羰基的化学选择性氢化。最佳催化剂 Ir/WO-300 在水介质中对肉桂醛(CAL)氢化为肉桂醇(COL)表现出优异的活性(TOF 值:1313.7 min⁻¹)和化学选择性(产率:~98.0%),据我们所知,与先前报道的液相反应中的多相催化剂相比,这是最高水平。高角度环形暗场扫描透射电子显微镜(Ac-HAADF-STEM)、X 射线吸收精细结构(XAFS)和 X 射线光电子能谱(XPS)证实了由金属-载体相互作用诱导形成的界面结构(Ir-O-W(0 ≤ δ ≤ 4);O 表示氧空位)以及 Ir/WO-300 中最大浓度的界面 Ir(Ir⁰)。光谱研究(拉曼光谱、傅里叶变换红外光谱(FT-IR))、同位素标记测量结合密度泛函理论(DFT)计算证实,C=O 基团的氢化由两条途径组成:水介导的氢化(主要)和直接氢化(H 解离,次要)。在前一种情况下,W-O 位点加速了 H₂O 的活化吸附,而 Ir 位点促进了 H₂ 的 H-H 键裂解,并且 Ir 促进了 CAL 的吸附。H₂O 分子作为氢物种的来源,通过氢键网络直接参与羰基的氢化,相对于 H 解离路径,其能垒大大降低。这项工作展示了一条绿色催化路线,打破了不饱和醛选择性氢化中活性-选择性的权衡,在多相催化中显示出巨大潜力。