文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用三维内镜和表面重建的颅前窝外科导航。

Surgical Navigation in the Anterior Skull Base Using 3-Dimensional Endoscopy and Surface Reconstruction.

机构信息

Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston.

Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

JAMA Otolaryngol Head Neck Surg. 2024 Apr 1;150(4):318-326. doi: 10.1001/jamaoto.2024.0013.


DOI:10.1001/jamaoto.2024.0013
PMID:38451508
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11009826/
Abstract

IMPORTANCE: Image guidance is an important adjunct for endoscopic sinus and skull base surgery. However, current systems require bulky external tracking equipment, and their use can interrupt efficient surgical workflow. OBJECTIVE: To evaluate a trackerless surgical navigation system using 3-dimensional (3D) endoscopy and simultaneous localization and mapping (SLAM) algorithms in the anterior skull base. DESIGN, SETTING, AND PARTICIPANTS: This interventional deceased donor cohort study and retrospective clinical case study was conducted at a tertiary academic medical center with human deceased donor specimens and a patient with anterior skull base pathology. EXPOSURES: Participants underwent endoscopic endonasal transsphenoidal dissection and surface model reconstruction from stereoscopic video with registration to volumetric models segmented from computed tomography (CT) and magnetic resonance imaging. MAIN OUTCOMES AND MEASURES: To assess the fidelity of surface model reconstruction and accuracy of surgical navigation and surface-CT model coregistration, 3 metrics were calculated: reconstruction error, registration error, and localization error. RESULTS: In deceased donor models (n = 9), high-fidelity surface models of the posterior wall of the sphenoid sinus were reconstructed from stereoscopic video and coregistered to corresponding volumetric CT models. The mean (SD; range) reconstruction, registration, and localization errors were 0.60 (0.24; 0.36-0.93), 1.11 (0.49; 0.71-1.56) and 1.01 (0.17; 0.78-1.25) mm, respectively. In a clinical case study of a patient who underwent a 3D endoscopic endonasal transsphenoidal resection of a tubercular meningioma, a high-fidelity surface model of the posterior wall of the sphenoid was reconstructed from intraoperative stereoscopic video and coregistered to a volumetric preoperative fused CT magnetic resonance imaging model with a root-mean-square error of 1.38 mm. CONCLUSIONS AND RELEVANCE: The results of this study suggest that SLAM algorithm-based endoscopic endonasal surgery navigation is a novel, accurate, and trackerless approach to surgical navigation that uses 3D endoscopy and SLAM-based algorithms in lieu of conventional optical or electromagnetic tracking. While multiple challenges remain before clinical readiness, a SLAM algorithm-based endoscopic endonasal surgery navigation system has the potential to improve surgical efficiency, economy of motion, and safety.

摘要

重要性:图像引导是内镜鼻窦和颅底手术的重要辅助手段。然而,目前的系统需要庞大的外部跟踪设备,并且它们的使用可能会中断高效的手术流程。

目的:评估一种无跟踪器的手术导航系统,该系统使用 3 维(3D)内窥镜和同时定位和映射(SLAM)算法在颅前底。

设计、设置和参与者:这是一项在三级学术医疗中心进行的介入性已故供体队列研究和回顾性临床病例研究,涉及已故供体标本和一名颅前底病理患者。

暴露:参与者接受了内镜经鼻蝶窦切开术,并从立体视频中进行表面模型重建,并与从计算机断层扫描(CT)和磁共振成像(MRI)分割的容积模型进行配准。

主要结果和措施:为了评估表面模型重建的保真度以及手术导航和表面-CT 模型配准的准确性,计算了 3 项指标:重建误差、注册误差和定位误差。

结果:在已故供体模型(n=9)中,从立体视频中重建了蝶窦后壁的高精度表面模型,并与相应的容积 CT 模型进行了配准。重建、注册和定位误差的平均值(标准差;范围)分别为 0.60(0.24;0.36-0.93)、1.11(0.49;0.71-1.56)和 1.01(0.17;0.78-1.25)mm。在一名接受 3D 内镜经鼻蝶窦切除结核性脑膜瘤的临床病例研究中,从术中立体视频中重建了蝶窦后壁的高精度表面模型,并与容积术前融合 CT 磁共振成像模型进行了配准,均方根误差为 1.38mm。

结论和相关性:这项研究的结果表明,基于 SLAM 算法的内镜经鼻手术导航是一种新颖、准确、无跟踪器的手术导航方法,它使用 3D 内窥镜和基于 SLAM 的算法代替传统的光学或电磁跟踪。虽然在临床准备之前还有许多挑战,但基于 SLAM 算法的内镜经鼻手术导航系统有可能提高手术效率、运动经济性和安全性。

相似文献

[1]
Surgical Navigation in the Anterior Skull Base Using 3-Dimensional Endoscopy and Surface Reconstruction.

JAMA Otolaryngol Head Neck Surg. 2024-4-1

[2]
The use of an O-arm in endonasal endoscopic operations of the skull base.

BMC Surg. 2021-1-23

[3]
Toward video-based navigation for endoscopic endonasal skull base surgery.

Med Image Comput Comput Assist Interv. 2009

[4]
Accuracy and feasibility of a dedicated image guidance solution for endoscopic lateral skull base surgery.

Eur Arch Otorhinolaryngol. 2018-4

[5]
Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking.

PLoS One. 2020-1-16

[6]
Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.

Acta Otolaryngol. 2007-4

[7]
Assessment of a Patient-Specific, 3-Dimensionally Printed Endoscopic Sinus and Skull Base Surgical Model.

JAMA Otolaryngol Head Neck Surg. 2018-7-1

[8]
Neural Radiance Fields (NeRF) for 3D Reconstruction of Monocular Endoscopic Video in Sinus Surgery.

Otolaryngol Head Neck Surg. 2025-4

[9]
Use of Mixed Reality Visualization in Endoscopic Endonasal Skull Base Surgery.

Oper Neurosurg (Hagerstown). 2020-7-1

[10]
Defining the lateral limits of the endoscopic endonasal transtuberculum transplanum approach: anatomical study with pertinent quantitative analysis.

J Neurosurg. 2018-4-20

引用本文的文献

[1]
High-Fidelity 3D Reconstruction for Accurate Anatomical Measurements in Endoscopic Sinus Surgery.

Proc SPIE Int Soc Opt Eng. 2025-2

[2]
Neural Radiance Fields (NeRF) for 3D Reconstruction of Monocular Endoscopic Video in Sinus Surgery.

Otolaryngol Head Neck Surg. 2025-4

[3]
Special Issue "New Updates in Oral and Maxillofacial Surgery".

J Pers Med. 2024-7-1

本文引用的文献

[1]
PhacoTrainer: Deep Learning for Cataract Surgical Videos to Track Surgical Tools.

Transl Vis Sci Technol. 2023-3-1

[2]
Endoscopic Endonasal Skull Base Surgery Complication Avoidance: A Contemporary Review.

Brain Sci. 2022-12-8

[3]
Clinical Validation and Extension of an Automated, Deep Learning-Based Algorithm for Quantitative Sinus CT Analysis.

AJNR Am J Neuroradiol. 2022-9

[4]
Use of Machine Learning to Assess Cataract Surgery Skill Level With Tool Detection.

Ophthalmol Sci. 2022-10-27

[5]
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network.

Eur Radiol. 2023-4

[6]
Automated segmentation of head CT scans for computer-assisted craniomaxillofacial surgery applying a hierarchical patch-based stack of convolutional neural networks.

Int J Comput Assist Radiol Surg. 2022-11

[7]
Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images.

Sci Rep. 2022-5-7

[8]
Complications in Endoscopic Pituitary Surgery.

Otolaryngol Clin North Am. 2022-4

[9]
Analysis of Cataract Surgery Instrument Identification Performance of Convolutional and Recurrent Neural Network Ensembles Leveraging BigCat.

Transl Vis Sci Technol. 2022-4-1

[10]
Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network.

Clin Oral Investig. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索