School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Nano Lett. 2024 Mar 20;24(11):3404-3412. doi: 10.1021/acs.nanolett.3c05152. Epub 2024 Mar 7.
Assembling metal-organic frameworks (MOFs) into ordered multidimensional porous superstructures promises the encapsulation of enzymes for heterogeneous biocatalysts. However, the full potential of this approach has been limited by the poor stability of enzymes and the uncontrolled assembly of MOF nanoparticles onto suitable supports. In this study, a novel and exceptionally robust Ni-imidazole-based MOF was synthesized in water at room temperature, enabling in situ enzyme encapsulation. Based on this MOF platform, we developed a DNA-directed assembly strategy to achieve the uniform placement of MOF nanoparticles onto bacterial cellulose nanofibers, resulting in a distinctive "branch-fruit" structure. The resulting hybrid materials demonstrated remarkable versatility across various catalytic systems, accommodating natural enzymes, nanoenzymes, and multienzyme cascades, thus showcasing enormous potential as universal microbioreactors. Furthermore, the hierarchical composites facilitated rapid diffusion of the bulky substrate while maintaining the enzyme stability, with ∼3.5-fold higher relative activity compared to the traditional enzyme@MOF immobilized in bacterial cellulose nanofibers.
将金属-有机骨架(MOFs)组装成有序的多维多孔超结构有望实现酶的封装,用于制备异相生物催化剂。然而,这种方法的全部潜力受到酶稳定性差和 MOF 纳米颗粒在合适载体上不受控制组装的限制。在这项研究中,在室温的水中合成了一种新颖且异常稳定的基于镍-咪唑的 MOF,从而实现了酶的原位封装。基于该 MOF 平台,我们开发了一种 DNA 导向的组装策略,以实现 MOF 纳米颗粒在细菌纤维素纳米纤维上的均匀放置,从而形成独特的“树枝-果实”结构。所得的杂化材料在各种催化体系中表现出了显著的多功能性,可容纳天然酶、纳米酶和多酶级联反应,因此有望成为通用的微生物反应器。此外,分层复合材料促进了大块底物的快速扩散,同时保持了酶的稳定性,与传统的固定在细菌纤维素纳米纤维中的酶@MOF 相比,相对活性提高了约 3.5 倍。