General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan.
General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan.
J Biosci Bioeng. 2024 May;137(5):329-334. doi: 10.1016/j.jbiosc.2024.02.006. Epub 2024 Mar 8.
Hyperthermostable endoglucanases of glycoside hydrolase family 12 from the archaeon Pyrococcus furiosus (EGPf) catalyze the hydrolysis of β-1,4-glucosidic linkages in cellulose and β-glucan structures that contain β-1,3- and β-1,4-mixed linkages. In this study, EGPf was heterologously expressed with Aspergillus niger and the recombinant enzyme was characterized. The successful expression of EGPf resulted as N-glycosylated protein in its secretion into the culture medium. The glycosylation of the recombinant EGPf positively impacted the kinetic characterization of EGPf, thereby enhancing its catalytic efficiency. Moreover, glycosylation significantly boosted the thermostability of EGPf, allowing it to retain over 80% of its activity even after exposure to 100 °C for 5 h, with the optimal temperature being above 120 °C. Glycosylation did not affect the pH stability or salt tolerance of EGPf, although the glycosylated compound exhibited a high tolerance to ionic liquids. EGPf displayed the highest specific activity in the presence of 20% (v/v) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), reaching approximately 2.4 times greater activity than that in the absence of [Bmim]Cl. The specific activity was comparable to that without the ionic liquid even in the presence of 40% (v/v) [Bmim]Cl. Glycosylated EGPf has potential as an enzyme for saccharifying cellulose under high-temperature conditions or with ionic liquid treatment due to its exceptional thermostability and ionic liquid tolerance. These results underscore the potential of N-glycosylation as an effective strategy to further enhance both the thermostability of highly thermostable archaeal enzymes and the hydrolysis of barley cellulose in the presence of [Bmim]Cl.
热稳定性内切葡聚糖酶家族 12 来自古菌 Pyrococcus furiosus(EGPf),可催化纤维素和含有β-1,3-和β-1,4-混合键的β-葡聚糖结构中β-1,4-糖苷键的水解。在这项研究中,EGPf 被异源表达于黑曲霉中,并对重组酶进行了表征。EGPf 的成功表达导致其在分泌到培养基中时成为 N-糖基化蛋白。重组 EGPf 的糖基化对其动力学特性产生了积极影响,从而提高了其催化效率。此外,糖基化显著提高了 EGPf 的热稳定性,使其在 100°C 下孵育 5 小时后仍能保留超过 80%的活性,最适温度高于 120°C。糖基化并不影响 EGPf 的 pH 稳定性或耐盐性,尽管糖基化化合物对离子液体具有较高的耐受性。在存在 20%(v/v)1-丁基-3-甲基咪唑氯化物([Bmim]Cl)时,EGPf 表现出最高的比活性,比不存在 [Bmim]Cl 时的活性高约 2.4 倍。即使在存在 40%(v/v)[Bmim]Cl 时,比活性也与没有离子液体时相当。由于其出色的热稳定性和对离子液体的耐受性,糖基化 EGPf 有望成为在高温条件下或用离子液体处理糖化纤维素的酶。这些结果强调了 N-糖基化作为一种有效策略的潜力,可进一步提高高度热稳定的古菌酶的热稳定性和在 [Bmim]Cl 存在下水解大麦纤维素的能力。