Peet Evan D, Schultz Dana, Lovejoy Susan, Tsui Fuchiang Rich
RAND Corporation, Pittsburgh, Pennsylvania, USA.
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Health Econ. 2024 Jun;33(6):1387-1411. doi: 10.1002/hec.4821. Epub 2024 Mar 10.
Doula services represent an underutilized maternal and child health intervention with the potential to improve outcomes through the provision of physical, emotional, and informational support. However, there is limited evidence of the infant health effects of doulas despite well-established connections between maternal and infant health. Moreover, because the availability of doulas is limited and often not covered by insurers, existing evidence leaves unclear if or how doula services should be allocated to achieve the greatest improvements in outcomes. We use unique data and machine learning to develop accurate predictive models of infant health and doula service participation. We then combine these predictive models within the double machine learning method to estimate the effects of doula services. We show that while doula services reduce risk on average, the benefits of doula services increase as the risk of negative infant health outcomes increases. We compare these benefits to the costs of doula services under alternative allocation schemes and show that leveraging the risk predictions dramatically increases the cost effectiveness of doula services. Our results show the potential of big data and novel analytic methods to provide cost-effective support to those at greatest risk of poor outcomes.
导乐服务是一种未得到充分利用的妇幼保健干预措施,通过提供身体、情感和信息支持,有可能改善分娩结局。然而,尽管母婴健康之间的联系已得到充分证实,但关于导乐对婴儿健康影响的证据却很有限。此外,由于导乐的可获得性有限,且往往不在保险公司的承保范围内,现有证据尚不清楚是否应分配导乐服务,以及应如何分配导乐服务才能最大程度地改善分娩结局。我们使用独特的数据和机器学习方法来开发准确的婴儿健康和导乐服务参与预测模型。然后,我们将这些预测模型结合到双重机器学习方法中,以估计导乐服务的效果。我们发现,虽然导乐服务平均降低了风险,但随着婴儿出现不良健康结局风险的增加,导乐服务的益处也会增加。我们将这些益处与替代分配方案下导乐服务的成本进行了比较,结果表明,利用风险预测可显著提高导乐服务的成本效益。我们的研究结果显示了大数据和新颖分析方法为结局不佳风险最高的人群提供具有成本效益支持的潜力。