Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France.
Physics and Nanotechnology, University of Minnesota, Minneapolis, MN, USA.
Methods Mol Biol. 2024;2760:447-461. doi: 10.1007/978-1-0716-3658-9_25.
Cell-free transcription-translation (TXTL) enables achieving an ever-growing number of applications, ranging from the rapid characterization of DNA parts to the production of biologics. As TXTL systems gain in versatility and efficacy, larger DNAs can be expressed in vitro extending the scope of cell-free biomanufacturing to new territories. The demonstration that complex entities such as infectious bacteriophages can be synthesized from their genomes in TXTL reactions opens new opportunities, especially for biomedical applications. Over the last century, phages have been instrumental in the discovery of many ground-breaking biotechnologies including CRISPR. The primary function of phages is to infect bacteria. In that capacity, phages are considered an alternative approach to tackling current societal problems such as the rise of antibiotic-resistant microbes. TXTL provides alternative means to produce phages and with several advantages over in vivo synthesis methods. In this chapter, we describe the basic procedures to purify phage genomes, cell-free synthesize phages, and quantitate them using an all-E. coli TXTL system.
无细胞转录-翻译 (TXTL) 可实现越来越多的应用,从快速鉴定 DNA 元件到生物制剂的生产。随着 TXTL 系统的多功能性和功效的提高,更大的 DNA 可以在体外表达,从而将无细胞生物制造的范围扩展到新的领域。复杂实体(如传染性噬菌体)可以在 TXTL 反应中从其基因组中合成的证明为生物医学应用开辟了新的机会。在上个世纪,噬菌体在发现许多开创性生物技术方面发挥了重要作用,包括 CRISPR。噬菌体的主要功能是感染细菌。在这种能力下,噬菌体被认为是解决当前社会问题(如抗生素耐药微生物的出现)的一种替代方法。TXTL 提供了生产噬菌体的替代方法,并具有优于体内合成方法的几个优势。在本章中,我们描述了使用全大肠杆菌 TXTL 系统纯化噬菌体基因组、无细胞合成噬菌体以及定量它们的基本程序。