Tong Luyang, Chen Changdong, Cai Yangjian, Zhao Lina
Shandong Provincial Key Laboratory of Optics and Photonic Device, College of Physics and Electronics, Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China.
College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
Materials (Basel). 2024 Mar 1;17(5):1144. doi: 10.3390/ma17051144.
Optical vortex arrays are characterized by specific orbital angular momentums, and they have important applications in optical trapping and manipulation, optical communications, secure communications, and high-security information processing. Despite widespread research on optical vortex arrays, the 2 μm wavelength range remains underexplored. Pulsed lasers at 2 μm are vital in laser medicine, sensing, communications, and nonlinear optic applications. The need for 2 μm-pulsed structured optical vortices, combining the advantages of this wavelength range and optical vortex arrays, is evident. Therefore, using just three elements in the cavity, we demonstrate a compact self-Q-switched Tm:YALO vortex laser by utilizing the self-modulation effect of a laser crystal and a defect spot mirror. By tuning the position of the defect spot and the output coupler, the resonator delivers optical vortex arrays with phase singularities ranging from 1 to 4. The narrowest pulse widths of the TEM LG, two-, three-, and four-vortex arrays are 543, 1266, 1281, 2379, and 1615 ns, respectively. All the vortex arrays in our study have relatively high-power outputs, slope efficiencies, and single-pulse energies. This work paves the way for a 2 μm-pulsed structured light source that has potential applications in optical trapping and manipulation, free-space optical communications, and laser medicine.
光学涡旋阵列具有特定的轨道角动量,在光学捕获与操控、光通信、安全通信以及高安全信息处理等方面有着重要应用。尽管对光学涡旋阵列已有广泛研究,但2μm波长范围仍未得到充分探索。2μm的脉冲激光在激光医学、传感、通信及非线性光学应用中至关重要。显然需要结合该波长范围和光学涡旋阵列优势的2μm脉冲结构化光学涡旋。因此,我们仅在腔内使用三个元件,通过利用激光晶体的自调制效应和缺陷光斑镜,演示了一种紧凑的自调Q掺铥钇铝镓石榴石涡旋激光器。通过调整缺陷光斑和输出耦合器的位置,谐振腔可输出相位奇点数量从1到4的光学涡旋阵列。TEM LG、二涡旋、三涡旋和四涡旋阵列的最窄脉冲宽度分别为543、1266、1281、2379和1615纳秒。我们研究中的所有涡旋阵列都具有相对较高的功率输出、斜率效率和单脉冲能量。这项工作为一种2μm脉冲结构化光源铺平了道路,该光源在光学捕获与操控、自由空间光通信和激光医学中具有潜在应用。