Zhang Ronghao, Jadhav Darshan Aatmaram, Kim Najeong, Kramer Benjamin, Gonzalez-Vicente Agustin
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Int J Mol Sci. 2024 Mar 6;25(5):3071. doi: 10.3390/ijms25053071.
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (: 1.9 log2FC, < 1 × 10; : 1.4 log2FC, < 4 × 10). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading.
单细胞RNA测序(scRNAseq)是肾脏研究中的一项关键工具。这些技术根据转录组相似性对细胞进行聚类,而不考虑肾单位内的解剖位置和顺序。因此,一个转录组簇可能会掩盖肾单位节段内细胞群体的异质性。高糖饮食会导致盐敏感性高血压,部分原因是近端小管(PT)对果糖的重吸收。然而,顶端PT中四种已知果糖转运蛋白(SGLT4、SGLT5、GLUT5和NaGLT1)的组织情况仍知之甚少。我们假设近端小管各亚段内的细胞表现出复杂、异质的果糖转运蛋白表达模式。为了验证这一假设,我们分析了公开可用的scRNAseq和肾小管显微切割数据库中的大鼠肾脏转录组和蛋白质组。我们发现,显微切割的PT-S1节段由81%±12%具有scRNAseq衍生的S1转录特征的细胞组成,而PT-S2表达18%±9%的S1、58%±8%的S2和19%±5%的S3转录本混合物,PT-S3由75%±9%的S3转录本组成。在所有三个PT节段中均能检测到所有四种果糖转运蛋白的表达,但关键果糖转运蛋白SGLT5和GLUT5从S1到S3逐渐增加,且在S3中均显著高于S1/S2上调(:1.9 log2倍变化,<1×10;:1.4 log2倍变化,<4×10)。在人类肾脏中也发现了类似的分布。这些数据表明,S3是人类和大鼠中果糖重吸收的主要部位。最后,由于在每个节段中发现了多种scRNAseq转录表型,我们的研究结果还意味着应用于scRNAseq簇的解剖学标签可能会产生误导。