Suppr超能文献

医学中的人工智能:通过质量保证、质量控制和验收测试降低风险并实现效益最大化。

Artificial intelligence in medicine: mitigating risks and maximizing benefits via quality assurance, quality control, and acceptance testing.

作者信息

Mahmood Usman, Shukla-Dave Amita, Chan Heang-Ping, Drukker Karen, Samala Ravi K, Chen Quan, Vergara Daniel, Greenspan Hayit, Petrick Nicholas, Sahiner Berkman, Huo Zhimin, Summers Ronald M, Cha Kenny H, Tourassi Georgia, Deserno Thomas M, Grizzard Kevin T, Näppi Janne J, Yoshida Hiroyuki, Regge Daniele, Mazurchuk Richard, Suzuki Kenji, Morra Lia, Huisman Henkjan, Armato Samuel G, Hadjiiski Lubomir

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States.

Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, United States.

出版信息

BJR Artif Intell. 2024 Mar 4;1(1):ubae003. doi: 10.1093/bjrai/ubae003. eCollection 2024 Jan.

Abstract

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI.

摘要

人工智能(AI)工具在医学中的应用给现有的临床工作流程带来了挑战。本评论探讨了针对特定情境的质量保证(QA)的必要性,强调了采用质量控制(QC)程序进行强有力的QA措施的必要性,这些程序包括:(1)临床使用前的验收测试(AT);(2)持续的QC监测;以及(3)充分的用户培训。讨论还涵盖了AT和QA的基本组成部分,并配有实际案例说明。我们还强调了制造商或供应商、监管机构、医疗保健系统、医学物理学家和临床医生的共同责任,即实施适当的测试和监督,以确保通过AI实现医学的安全和公平转型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c90b/10928809/3e6a382f313e/ubae003f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验