College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Plant Physiol. 2024 May 31;195(2):1038-1052. doi: 10.1093/plphys/kiae156.
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
干旱和土壤盐渍化对农业有重大影响。虽然脯氨酸在增强抗逆性方面的作用已为人所知,但植物如何处理应激信号并在应激下控制脯氨酸合成的确切分子机制仍不完全清楚。在番茄(Solanum lycopersicum L.)中,干旱和盐胁迫会刺激一氧化氮(NO)的产生,从而通过激活Δ1-吡咯啉-5-羧酸合成酶(SlP5CS)和Δ1-吡咯啉-5-羧酸还原酶(SlP5CR)基因以及 P5CR 酶来促进脯氨酸的合成。关键因素是应激触发的 NO 产生,它调节 SlP5CR 在 Cys-5 处的 S-亚硝基化,从而增加其 NAD(P)H 亲和力和酶活性。SlP5CR 的 S-亚硝基化使番茄植株能够更好地适应不断变化的 NAD(P)H 水平,从而在应激期间提高 SlP5CR 活性和脯氨酸合成。通过比较遗传修饰表达不同形式 SlP5CR 的番茄品系,包括模拟 S-亚硝基化的变体(SlP5CRC5W),我们发现 SlP5CRC5W 植株表现出更好的生长和抗逆性。这归因于更好的 P5CR 活性、脯氨酸产生、水利用效率、活性氧清除和钠排泄。总的来说,这项研究表明,模拟 S-亚硝基化 SlP5CR 的番茄工程植株在干旱和盐胁迫条件下表现出增强的生长和产量,突出了一种有前途的耐胁迫番茄种植方法。