Ohno Mizuki, Fujita Takahiro C, Kawasaki Masashi
Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan.
RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan.
Sci Adv. 2024 Mar 15;10(11):eadk6308. doi: 10.1126/sciadv.adk6308. Epub 2024 Mar 13.
Geometrical frustration endows magnets with degenerate ground states, resulting in exotic spin structures and quantum phenomena. Such magnets, called quantum magnets, can display non-coplanar spin textures and be a viable platform for the topological Hall effect driven by "emergent field." However, most quantum magnets are insulators, making it challenging to electrically detect associated fluctuations and excitations. Here, we probe magnetic transitions in the spin ice insulator DyTiO, a prototypical quantum magnet, as emergent magnetotransport phenomena at the heterointerface with the nonmagnetic metal BiRhO. Angle-dependent longitudinal resistivity exhibits peaks at the magnetic phase boundaries of spin ice due to domain boundary scattering. In addition, the anomalous Hall resistivity undergoes a sign change with the magnetic transition in DyTiO, reflecting the inversion of the emergent field. These findings, on the basis of epitaxial techniques, connect the fundamental research on insulating quantum magnets to their potential electronic applications, possibly leading to transformative innovations in quantum technologies.
几何阻挫赋予磁体简并基态,从而产生奇异的自旋结构和量子现象。这类磁体被称为量子磁体,它们可以展现出非共面的自旋纹理,并且是由“涌现场”驱动的拓扑霍尔效应的一个可行平台。然而,大多数量子磁体都是绝缘体,这使得通过电学方法检测相关的涨落和激发具有挑战性。在此,我们探测了自旋冰绝缘体DyTiO(一种典型的量子磁体)中的磁转变,将其作为与非磁性金属BiRhO异质界面处的一种涌现磁输运现象。由于畴界散射,与角度相关的纵向电阻率在自旋冰的磁相边界处出现峰值。此外,反常霍尔电阻率随着DyTiO中的磁转变发生符号变化,这反映了涌现场的反转。这些基于外延技术的发现,将绝缘量子磁体的基础研究与其潜在的电子应用联系起来,可能会在量子技术领域引发变革性创新。