Suppr超能文献

基于注意力机制模型的编解码模型在蛋白质二级结构预测中的新方法。

A novel approach for protein secondary structure prediction using encoder-decoder with attention mechanism model.

机构信息

Department of Computer Science and Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

Biomol Concepts. 2024 Mar 13;15(1). doi: 10.1515/bmc-2022-0043. eCollection 2024 Jan 1.

Abstract

Computational biology faces many challenges like protein secondary structure prediction (PSS), prediction of solvent accessibility, etc. In this work, we addressed PSS prediction. PSS is based on sequence-structure mapping and interaction among amino acid residues. We proposed an encoder-decoder with an attention mechanism model, which considers the mapping of sequence structure and interaction among residues. The attention mechanism is used to select prominent features from amino acid residues. The proposed model is trained on CB513 and CullPDB open datasets using the Nvidia DGX system. We have tested our proposed method for and accuracy, segment of overlap, and Mathew correlation coefficient. We achieved 70.63 and 78.93% and accuracy, respectively, on the CullPDB dataset whereas 79.8 and 77.13% and accuracy on the CB513 dataset. We observed improvement in SOV up to 80.29 and 91.3% on CullPDB and CB513 datasets. We achieved the results using our proposed model in very few epochs, which is better than the state-of-the-art methods.

摘要

计算生物学面临着许多挑战,如蛋白质二级结构预测(PSS)、溶剂可及性预测等。在这项工作中,我们解决了 PSS 预测问题。PSS 基于序列-结构映射和氨基酸残基之间的相互作用。我们提出了一种具有注意力机制的编码器-解码器模型,该模型考虑了序列结构的映射和残基之间的相互作用。注意力机制用于从氨基酸残基中选择突出的特征。该模型在 Nvidia DGX 系统上使用 CB513 和 CullPDB 开放数据集进行训练。我们针对 CullPDB 数据集和 CB513 数据集测试了我们提出的方法的 、 准确性、重叠段和马修相关系数。我们在 CullPDB 数据集上分别实现了 70.63%和 78.93%的 、 准确性,在 CB513 数据集上分别实现了 79.8%和 77.13%的 、 准确性。我们观察到 SOV 在 CullPDB 和 CB513 数据集上提高了 80.29%和 91.3%。我们使用我们的模型在很少的时期内就获得了这些结果,这比现有的方法要好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验