Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy.
J Neural Eng. 2024 Mar 21;21(2). doi: 10.1088/1741-2552/ad33b0.
. Neural interfacing via decomposition of high-density surface electromyography (HD-sEMG) should be robust to signal non-stationarities incurred by changes in joint pose and contraction intensity.. We present an adaptive real-time motor unit decoding algorithm and test it on HD-sEMG collected from the extensor carpi radialis brevis during isometric contractions over a range of wrist angles and contraction intensities. The performance of the algorithm was verified using high-confidence benchmark decompositions derived from concurrently recorded intramuscular electromyography.. In trials where contraction conditions between the initialization and testing data differed, the adaptive decoding algorithm maintained significantly higher decoding accuracies when compared to static decoding methods.. Using "gold standard" verification techniques, we demonstrate the limitations of filter re-use decoding methods and show the necessity of parameter adaptation to achieve robust neural decoding.
通过分解高密度表面肌电图 (HD-sEMG) 进行神经接口应该能够抵抗由于关节姿势和收缩强度变化引起的信号非平稳性。我们提出了一种自适应实时运动单位解码算法,并在桡侧腕短伸肌的 HD-sEMG 上进行了测试,该肌在一系列腕关节角度和收缩强度的等长收缩期间进行了测试。该算法的性能使用来自同时记录的肌内肌电图的高置信度基准分解进行了验证。在初始化和测试数据之间的收缩条件不同的试验中,与静态解码方法相比,自适应解码算法保持了显著更高的解码精度。使用“黄金标准”验证技术,我们展示了滤波器重用解码方法的局限性,并表明需要进行参数自适应以实现稳健的神经解码。