School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
Phys Med Biol. 2024 Apr 3;69(8). doi: 10.1088/1361-6560/ad33b4.
Multi-contrast magnetic resonance imaging (MC MRI) can obtain more comprehensive anatomical information of the same scanning object but requires a longer acquisition time than single-contrast MRI. To accelerate MC MRI speed, recent studies only collect partial k-space data of one modality (target contrast) to reconstruct the remaining non-sampled measurements using a deep learning-based model with the assistance of another fully sampled modality (reference contrast). However, MC MRI reconstruction mainly performs the image domain reconstruction with conventional CNN-based structures by full supervision. It ignores the prior information from reference contrast images in other sparse domains and requires fully sampled target contrast data. In addition, because of the limited receptive field, conventional CNN-based networks are difficult to build a high-quality non-local dependency.In the paper, we propose an Image-Wavelet domain ConvNeXt-based network (IWNeXt) for self-supervised MC MRI reconstruction. Firstly, INeXt and WNeXt based on ConvNeXt reconstruct undersampled target contrast data in the image domain and refine the initial reconstructed result in the wavelet domain respectively. To generate more tissue details in the refinement stage, reference contrast wavelet sub-bands are used as additional supplementary information for wavelet domain reconstruction. Then we design a novel attention ConvNeXt block for feature extraction, which can capture the non-local information of the MC image. Finally, the cross-domain consistency loss is designed for self-supervised learning. Especially, the frequency domain consistency loss deduces the non-sampled data, while the image and wavelet domain consistency loss retain more high-frequency information in the final reconstruction.Numerous experiments are conducted on the HCP dataset and the M4Raw dataset with different sampling trajectories. Compared with DuDoRNet, our model improves by 1.651 dB in the peak signal-to-noise ratio.IWNeXt is a potential cross-domain method that can enhance the accuracy of MC MRI reconstruction and reduce reliance on fully sampled target contrast images.
多对比度磁共振成像(MC MRI)可以获得同一扫描对象更全面的解剖信息,但采集时间比单对比度 MRI 长。为了加速 MC MRI 的速度,最近的研究仅采集一种模态(目标对比度)的部分 k 空间数据,并用深度学习模型协助另一种完全采样模态(参考对比度)重建其余未采样的测量值。然而,MC MRI 重建主要通过全监督的基于传统卷积神经网络(CNN)的结构在图像域中进行图像域重建,它忽略了来自其他稀疏域中参考对比度图像的先验信息,并且需要完全采样的目标对比度数据。此外,由于受限的感受野,传统的基于 CNN 的网络难以构建高质量的非局部依赖性。在本文中,我们提出了一种基于卷积神经网络(ConvNeXt)的图像-小波域网络(IWNeXt)用于自监督 MC MRI 重建。首先,基于 ConvNeXt 的 INeXt 和 WNeXt 分别在图像域中重建欠采样的目标对比度数据,并在小波域中细化初始重建结果。为了在细化阶段生成更多的组织细节,将参考对比度小波子带用作小波域重建的附加补充信息。然后,我们设计了一种新的注意力卷积神经网络块用于特征提取,它可以捕获 MC 图像的非局部信息。最后,设计了跨域一致性损失用于自监督学习。特别是,频域一致性损失推断出未采样数据,而图像和小波域一致性损失保留了最终重建中的更多高频信息。在 HCP 数据集和 M4Raw 数据集上进行了不同采样轨迹的大量实验。与 DuDoRNet 相比,我们的模型在峰值信噪比方面提高了 1.651dB。IWNeXt 是一种潜在的跨域方法,可以提高 MC MRI 重建的准确性并减少对完全采样目标对比度图像的依赖。