Suppr超能文献

基于注意力的对抗训练权衡问题的研究与解决。

Attention-based investigation and solution to the trade-off issue of adversarial training.

机构信息

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China; School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China.

出版信息

Neural Netw. 2024 Jun;174:106224. doi: 10.1016/j.neunet.2024.106224. Epub 2024 Mar 2.

Abstract

Adversarial training has become the mainstream method to boost adversarial robustness of deep models. However, it often suffers from the trade-off dilemma, where the use of adversarial examples hurts the standard generalization of models on natural data. To study this phenomenon, we investigate it from the perspective of spatial attention. In brief, standard training typically encourages a model to conduct a comprehensive check to input space. But adversarial training often causes a model to overly concentrate on sparse spatial regions. This reduced tendency is beneficial to avoid adversarial accumulation but easily makes the model ignore abundant discriminative information, thereby resulting in weak generalization. To address this issue, this paper introduces an Attention-Enhanced Learning Framework (AELF) for robustness training. The main idea is to enable the model to inherit the attention pattern of standard pre-trained model through an embedding-level regularization. To be specific, given a teacher model built on natural examples, the embedding distribution of teacher model is used as a static constraint to regulate the embedding outputs of the objective model. This design is mainly supported with that the embedding feature of standard model is usually recognized as a rich semantic integration of input. For implementation, we present a simplified AELFs that can achieve the regularization with single cross entropy loss via the parameter initialization and parameter update strategy. This avoids the extra consistency comparison operation between embedding vectors. Experimental observations verify the rationality of our argument, and experimental results demonstrate that it can achieve remarkable improvements in generalization under the high-level robustness.

摘要

对抗训练已成为提高深度模型对抗鲁棒性的主流方法。然而,它经常受到权衡困境的影响,即对抗示例的使用会损害模型在自然数据上的标准泛化能力。为了研究这种现象,我们从空间注意力的角度进行了研究。简而言之,标准训练通常鼓励模型对输入空间进行全面检查。但是对抗训练通常会导致模型过度关注稀疏的空间区域。这种减少的趋势有利于避免对抗积累,但容易使模型忽略丰富的鉴别信息,从而导致较弱的泛化能力。为了解决这个问题,本文提出了一种用于鲁棒性训练的注意力增强学习框架(AELF)。主要思想是通过嵌入级别的正则化使模型继承标准预训练模型的注意力模式。具体来说,对于基于自然示例构建的教师模型,使用教师模型的嵌入分布作为静态约束来调节目标模型的嵌入输出。这种设计主要基于标准模型的嵌入特征通常被认为是输入的丰富语义集成。为了实现,我们提出了一个简化的 AELF,通过参数初始化和参数更新策略,可以仅使用单个交叉熵损失实现正则化。这避免了嵌入向量之间的额外一致性比较操作。实验观察验证了我们论点的合理性,实验结果表明,它可以在高水平的鲁棒性下显著提高泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验