文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于表面增强拉曼光谱和折射率传感的金三八面体的快速简便合成

Rapid and Facile Synthesis of Gold Trisoctahedrons for Surface-Enhanced Raman Spectroscopy and Refractive Index Sensing.

作者信息

Zhao Guili, Lochon Florian, Dembélé Kassiogé, Florea Ileana, Baron Alexandre, Ossikovski Razvigor, Güell Aleix G

机构信息

Laboratory of Physics of Interfaces and Thin Films, CNRS, UMR7647, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France.

Univ. Bordeaux, CNRS, CRPP, UMR5031, Pessac 33600, France.

出版信息

ACS Appl Nano Mater. 2024 Feb 27;7(5):5598-5609. doi: 10.1021/acsanm.4c00455. eCollection 2024 Mar 8.


DOI:10.1021/acsanm.4c00455
PMID:38481750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10928655/
Abstract

Au trisoctahedrons (TOHs) with sharp tips and high-index facets have exceptional properties for diverse applications, such as plasmon-enhanced spectroscopies, catalysis, sensing, and biomedicine. However, the synthesis of Au TOHs remains challenging, and most reported synthetic methods are time-consuming or involve complex steps, hindering the exploration of their potential applications. Herein, we present a facile and fast approach to prepare Au TOHs with high uniformity and good control over the final size and shape, all within less than 10 min of synthesis, for surface-enhanced Raman spectroscopy (SERS) and refractive index sensing. The size of the Au TOHs can be easily tailored over a wide range, from 39 to 268 nm, allowing a tuning of the plasmon resonance at wavelengths from visible to near-infrared regions. The exposed facets of the Au TOHs can also be varied by controlling the growth temperatures. The wide tunability of size and exposed facets of Au TOHs can greatly broaden the range of their applications. We have also encapsulated Au TOHs with zeolite imidazolate framework (ZIF-8), obtaining core-shell hybrid structures. With the ability to tune Au TOH size, we further assessed their SERS performances in function of their size by detecting 2-NaT in solution, exhibiting enhancement factors of the order of 10 with higher values when the LSPR is blue-shifted from the laser excitation wavelength. Au TOHs have been also compared for refractive index sensing applications against Au nanospheres, revealing Au TOHs as better candidates. Overall, this facile and fast method for synthesizing Au TOHs with tunable size and exposed facets simplifies the path toward the exploration of properties and applications of this highly symmetrical and high-index nanostructure.

摘要

具有尖锐尖端和高指数晶面的金三八面体(TOHs)在多种应用中具有优异性能,如等离子体增强光谱学、催化、传感和生物医学等。然而,金TOHs的合成仍然具有挑战性,大多数已报道的合成方法耗时或涉及复杂步骤,阻碍了对其潜在应用的探索。在此,我们提出了一种简便快速的方法来制备具有高均匀性且能很好地控制最终尺寸和形状的金TOHs,整个合成过程在不到10分钟内完成,用于表面增强拉曼光谱(SERS)和折射率传感。金TOHs的尺寸可以在39至268纳米的宽范围内轻松定制,从而能够在从可见光到近红外区域的波长处调节等离子体共振。通过控制生长温度,金TOHs的暴露晶面也可以改变。金TOHs尺寸和暴露晶面的广泛可调性可以极大地拓宽其应用范围。我们还将金TOHs封装在沸石咪唑酯骨架(ZIF-8)中,获得了核壳杂化结构。凭借调节金TOH尺寸的能力,我们通过检测溶液中的2-NaT进一步评估了它们作为尺寸函数的SERS性能,当局域表面等离子体共振(LSPR)从激光激发波长蓝移时,增强因子达到10的量级且值更高。在折射率传感应用方面,还将金TOHs与金纳米球进行了比较,结果表明金TOHs是更好的候选材料。总体而言,这种简便快速的合成具有可调尺寸和暴露晶面的金TOHs的方法简化了探索这种高度对称和高指数纳米结构的性质和应用的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/2ebddaae09ec/an4c00455_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fb74869fdf6e/an4c00455_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/3a83b304e060/an4c00455_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fd32a56d6d52/an4c00455_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/1e533246d7ec/an4c00455_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/27a0f529b0fc/an4c00455_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/f2cf6975585b/an4c00455_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/87916464c284/an4c00455_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fbb77cd97ef2/an4c00455_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/2ebddaae09ec/an4c00455_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fb74869fdf6e/an4c00455_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/3a83b304e060/an4c00455_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fd32a56d6d52/an4c00455_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/1e533246d7ec/an4c00455_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/27a0f529b0fc/an4c00455_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/f2cf6975585b/an4c00455_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/87916464c284/an4c00455_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/fbb77cd97ef2/an4c00455_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d079/10928655/2ebddaae09ec/an4c00455_0009.jpg

相似文献

[1]
Rapid and Facile Synthesis of Gold Trisoctahedrons for Surface-Enhanced Raman Spectroscopy and Refractive Index Sensing.

ACS Appl Nano Mater. 2024-2-27

[2]
Modeling of the surface plasmon resonance tunability of silver/gold core-shell nanostructures.

RSC Adv. 2018-5-29

[3]
Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.

Phys Chem Chem Phys. 2015-9-7

[4]
Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.

Langmuir. 2013-11-21

[5]
{331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity.

Nanoscale. 2015-5-14

[6]
Enhanced optical responses of Au@Pd core/shell nanobars.

Langmuir. 2009-1-20

[7]
The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region.

RSC Adv. 2020-8-20

[8]
Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.

Nano Lett. 2014-10-10

[9]
Facile tuning of tip sharpness on gold nanostars by the controlled seed-growth method and coating with a silver shell for detection of thiram using surface enhanced Raman spectroscopy (SERS).

RSC Adv. 2022-8-15

[10]
Gold nanoshurikens with uniform sharp tips for chemical sensing by the localized surface plasmon resonance.

Nanoscale. 2017-11-9

引用本文的文献

[1]
Nanoenzymatic SERS bifunctional detection platform based on recognition competition strategy for ultrasensitive detection of diabetic retinopathy-related biomarkers.

Front Bioeng Biotechnol. 2025-7-18

[2]
Connecting the nanoseed defect structure and crystallinity with resulting nanoparticle products.

Nanoscale Adv. 2025-5-16

[3]
Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour.

Molecules. 2024-12-2

本文引用的文献

[1]
Synthesis of Bitten Gold Nanoparticles with Single-Particle Chiroptical Responses.

Small. 2023-6

[2]
Plate-Like Colloidal Metal Nanoparticles.

Chem Rev. 2023-4-12

[3]
Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.

Acc Chem Res. 2022-3-15

[4]
Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air.

ACS Sens. 2021-6-25

[5]
Au@ZIF-8 Core-Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection.

Anal Chem. 2021-5-18

[6]
Toward Huygens' Sources with Dodecahedral Plasmonic Clusters.

Nano Lett. 2021-3-10

[7]
Tailored self-assembled nanocolloidal Huygens scatterers in the visible.

Nanoscale. 2020-12-21

[8]
Shielded Silver Nanorods for Bioapplications.

Chem Mater. 2020-7-14

[9]
Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones.

Nano Lett. 2020-6-10

[10]
Tracking Airborne Molecules from Afar: Three-Dimensional Metal-Organic Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring.

ACS Nano. 2019-10-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索