Zhao Guili, Lochon Florian, Dembélé Kassiogé, Florea Ileana, Baron Alexandre, Ossikovski Razvigor, Güell Aleix G
Laboratory of Physics of Interfaces and Thin Films, CNRS, UMR7647, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France.
Univ. Bordeaux, CNRS, CRPP, UMR5031, Pessac 33600, France.
ACS Appl Nano Mater. 2024 Feb 27;7(5):5598-5609. doi: 10.1021/acsanm.4c00455. eCollection 2024 Mar 8.
Au trisoctahedrons (TOHs) with sharp tips and high-index facets have exceptional properties for diverse applications, such as plasmon-enhanced spectroscopies, catalysis, sensing, and biomedicine. However, the synthesis of Au TOHs remains challenging, and most reported synthetic methods are time-consuming or involve complex steps, hindering the exploration of their potential applications. Herein, we present a facile and fast approach to prepare Au TOHs with high uniformity and good control over the final size and shape, all within less than 10 min of synthesis, for surface-enhanced Raman spectroscopy (SERS) and refractive index sensing. The size of the Au TOHs can be easily tailored over a wide range, from 39 to 268 nm, allowing a tuning of the plasmon resonance at wavelengths from visible to near-infrared regions. The exposed facets of the Au TOHs can also be varied by controlling the growth temperatures. The wide tunability of size and exposed facets of Au TOHs can greatly broaden the range of their applications. We have also encapsulated Au TOHs with zeolite imidazolate framework (ZIF-8), obtaining core-shell hybrid structures. With the ability to tune Au TOH size, we further assessed their SERS performances in function of their size by detecting 2-NaT in solution, exhibiting enhancement factors of the order of 10 with higher values when the LSPR is blue-shifted from the laser excitation wavelength. Au TOHs have been also compared for refractive index sensing applications against Au nanospheres, revealing Au TOHs as better candidates. Overall, this facile and fast method for synthesizing Au TOHs with tunable size and exposed facets simplifies the path toward the exploration of properties and applications of this highly symmetrical and high-index nanostructure.
具有尖锐尖端和高指数晶面的金三八面体(TOHs)在多种应用中具有优异性能,如等离子体增强光谱学、催化、传感和生物医学等。然而,金TOHs的合成仍然具有挑战性,大多数已报道的合成方法耗时或涉及复杂步骤,阻碍了对其潜在应用的探索。在此,我们提出了一种简便快速的方法来制备具有高均匀性且能很好地控制最终尺寸和形状的金TOHs,整个合成过程在不到10分钟内完成,用于表面增强拉曼光谱(SERS)和折射率传感。金TOHs的尺寸可以在39至268纳米的宽范围内轻松定制,从而能够在从可见光到近红外区域的波长处调节等离子体共振。通过控制生长温度,金TOHs的暴露晶面也可以改变。金TOHs尺寸和暴露晶面的广泛可调性可以极大地拓宽其应用范围。我们还将金TOHs封装在沸石咪唑酯骨架(ZIF-8)中,获得了核壳杂化结构。凭借调节金TOH尺寸的能力,我们通过检测溶液中的2-NaT进一步评估了它们作为尺寸函数的SERS性能,当局域表面等离子体共振(LSPR)从激光激发波长蓝移时,增强因子达到10的量级且值更高。在折射率传感应用方面,还将金TOHs与金纳米球进行了比较,结果表明金TOHs是更好的候选材料。总体而言,这种简便快速的合成具有可调尺寸和暴露晶面的金TOHs的方法简化了探索这种高度对称和高指数纳米结构的性质和应用的途径。
ACS Appl Nano Mater. 2024-2-27
Langmuir. 2009-1-20
Nanoscale Adv. 2025-5-16
Chem Rev. 2023-4-12
Acc Chem Res. 2022-3-15
Nano Lett. 2021-3-10
Nanoscale. 2020-12-21
Chem Mater. 2020-7-14