Suppr超能文献

使用低剂量铜有效管理生物膜影响硝化罐中的氯胺,而不会造成“烧伤”。

Effective chloramine management without "burn" in biofilm affected nitrifying tanks using a low dose of copper.

机构信息

Department of Civil and Construction Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.

School of Engineering, Design and Built Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.

出版信息

Chemosphere. 2024 Apr;354:141709. doi: 10.1016/j.chemosphere.2024.141709. Epub 2024 Mar 12.

Abstract

This paper highlights the potential to effectively inhibit nitrification and restore chloramine levels using a low copper concentration in a biofilm-affected (surface-to-volume ratio 16 m) continuous-flow laboratory-scale chloraminated system. High nitrite and low chloramine containing tanks are always recovered with chlorine "burn" by water utilities. The "burn" is not only costly and operationally complex, but also compromises the water quality, public health, and customer relations. A laboratory system comprising five reactors connected in series was operated. Each reactor simulated conditions typically encountered in full-scale systems. Low amount of copper (0.1-0.2 mg-Cu L) was dosed once per day into nitrified reactors. At any given time, only one reactor was dosed with copper. Not only inhibition of nitrification, chloramine decay associated with bulk water, biofilm and sediments also improved. However, the improvement was quicker and more significant when the influent to the reactor contained a high chloramine and a low nitrite concentration. Ammonia oxidising microbes exhibited resilience when exposed to low copper and chloramine concentrations for an extended period. Chloramine decay due to planktonic microbes and chemical reactions in bulk water decreased more rapidly than decay attributed to biofilm and sediments. The concept "biostable residual chlorine" explained how copper and chloramine can inhibit nitrification. Once nitrification was inhibited, the chloramine supplied from upstream effectively continued to suppress downstream nitrification, and this effect lasted more than 50 days even at 22 °C. The findings could be used to develop short-term copper dosing strategies and prevent negative impacts of nitrification and breakpoint chlorination.

摘要

本文强调了在生物膜影响(表面积与体积比为 16 m)的连续流实验室规模氯胺化系统中,使用低铜浓度有效抑制硝化作用并恢复氯胺水平的潜力。高亚硝酸盐和低氯胺含量的水箱总是通过水公司的氯气“燃烧”来回收。这种“燃烧”不仅成本高昂且操作复杂,还会影响水质、公共健康和客户关系。该研究使用了一个由五个反应器串联组成的实验室系统。每个反应器模拟了全规模系统中常见的条件。每天向硝化反应器中投加低剂量的铜(0.1-0.2 mg-Cu L)。在任何给定时间,只有一个反应器投加铜。不仅抑制了硝化作用,还改善了与总水、生物膜和沉积物相关的氯胺衰减。但是,当反应器进水含有高浓度氯胺和低亚硝酸盐浓度时,改进更快且更显著。当氨氧化微生物暴露于低铜和氯胺浓度下一段时间时,它们表现出了弹性。浮游微生物和总水中的化学反应引起的氯胺衰减比归因于生物膜和沉积物的衰减更快。“生物稳定余氯”的概念解释了铜和氯胺如何抑制硝化作用。一旦硝化作用被抑制,来自上游的氯胺有效继续抑制下游的硝化作用,即使在 22°C 下,这种效果也持续了 50 多天。这些发现可用于制定短期铜投加策略,以防止硝化作用和折点氯化的负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验