Cantisán Julia, Nieto Alexandre R, Seoane Jesús M, Sanjuán Miguel A F
Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain.
Phys Rev E. 2024 Feb;109(2-1):024201. doi: 10.1103/PhysRevE.109.024201.
The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low-energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.
随机重置理论断言,重启一个随机过程可以加速其完成。在本文中,我们研究了一个处于具有噪声增强稳定性的开放哈密顿系统中的布朗粒子的逃逸过程。这种现象意味着在特定噪声幅度下,逃逸过程会延迟。在此,我们提出一种随机重置协议,该协议可以避免噪声增强稳定性效应。在我们的方法中,不是在特定时间间隔重置轨迹,而是当达到预定义的能量阈值时重置轨迹。延迟逃逸过程的轨迹是那些由于随机波动而降低能量的轨迹。我们的重置方法利用了这一事实,并通过在轨迹达到低能量水平之前重置它们来避免长时间的暂态。最后,我们表明混沌动力学(即对初始条件的敏感依赖性)促进了重置策略的有效性。