预测高危型小儿神经母细胞瘤缓解诱导后无事件生存:结合 I-MIBG SPECT-CT 影像组学和临床因素。

Predicting event-free survival after induction of remission in high-risk pediatric neuroblastoma: combining I-MIBG SPECT-CT radiomics and clinical factors.

机构信息

Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.

SinoUnion Healthcare Inc, Beijing, China.

出版信息

Pediatr Radiol. 2024 May;54(5):805-819. doi: 10.1007/s00247-024-05901-z. Epub 2024 Mar 16.

Abstract

BACKGROUND

Accurately quantifying event-free survival after induction of remission in high-risk neuroblastoma can lead to better subsequent treatment decisions, including whether more aggressive therapy or milder treatment is needed to reduce unnecessary treatment side effects, thereby improving patient survival.

OBJECTIVE

To develop and validate a I-metaiodobenzylguanidine (MIBG) single-photon emission computed tomography-computed tomography (SPECT-CT)-based radiomics nomogram and evaluate its value in predicting event-free survival after induction of remission in high-risk neuroblastoma.

MATERIALS AND METHODS

One hundred and seventy-two patients with high-risk neuroblastoma who underwent an I-MIBG SPECT-CT examination were retrospectively reviewed. Eighty-seven patients with high-risk neuroblastoma met the final inclusion and exclusion criteria and were randomized into training and validation cohorts in a 7:3 ratio. The SPECT-CT images of patients were visually analyzed to assess the Curie score. The 3D Slicer software tool was used to outline the region of interest of the lumbar 3-5 vertebral bodies on the SPECT-CT images. Radiomics features were extracted and screened, and a radiomics model was constructed with the selected radiomics features. Univariate and multivariate Cox regression analyses were used to determine clinical risk factors and construct the clinical model. The radiomics nomogram was constructed using multivariate Cox regression analysis by incorporating radiomics features and clinical risk factors. C-index and time-dependent receiver operating characteristic curves were used to evaluate the performance of the different models.

RESULTS

The Curie score had the lowest efficacy for the assessment of event-free survival, with a C-index of 0.576 and 0.553 in the training and validation cohorts, respectively. The radiomics model, constructed from 11 radiomics features, outperformed the clinical model in predicting event-free survival in both the training cohort (C-index, 0.780 vs. 0.653) and validation cohort (C-index, 0.687 vs. 0.667). The nomogram predicted the best prognosis for event-free survival in both the training and validation cohorts, with C-indices of 0.819 and 0.712, and 1-year areas under the curve of 0.899 and 0.748, respectively.

CONCLUSION

I-MIBG SPECT-CT-based radiomics can accurately predict the event-free survival of high-risk neuroblastoma after induction of remission The constructed nomogram may enable an individualized assessment of high-risk neuroblastoma prognosis and assist clinicians in optimizing patient treatment and follow-up plans, thereby potentially improving patient survival.

摘要

背景

准确量化高危神经母细胞瘤诱导缓解后的无事件生存情况,有助于更好地制定后续治疗决策,包括确定是否需要更积极的治疗或更温和的治疗以减少不必要的治疗副作用,从而提高患者的生存率。

目的

建立并验证一种基于 I-间碘苄胍(MIBG)单光子发射计算机断层扫描-计算机断层扫描(SPECT-CT)的放射组学列线图,并评估其在预测高危神经母细胞瘤诱导缓解后无事件生存中的价值。

材料与方法

回顾性分析了 172 例接受 I-MIBG SPECT-CT 检查的高危神经母细胞瘤患者。最终纳入并符合最终排除标准的 87 例高危神经母细胞瘤患者按 7:3 的比例随机分为训练集和验证集。对患者的 SPECT-CT 图像进行视觉分析,以评估 Curie 评分。使用 3D Slicer 软件工具对 SPECT-CT 图像中的第 3-5 腰椎感兴趣区进行勾画。提取并筛选放射组学特征,并使用选定的放射组学特征构建放射组学模型。采用单因素和多因素 Cox 回归分析确定临床危险因素并构建临床模型。通过将放射组学特征和临床危险因素纳入多因素 Cox 回归分析来构建放射组学列线图。采用 C 指数和时间依赖性受试者工作特征曲线评估不同模型的性能。

结果

Curie 评分对无事件生存的评估效果最差,在训练集和验证集中的 C 指数分别为 0.576 和 0.553。基于 11 个放射组学特征构建的放射组学模型在预测训练集(C 指数:0.780 比 0.653)和验证集(C 指数:0.687 比 0.667)中的无事件生存方面均优于临床模型。列线图在训练集和验证集中对无事件生存的预测效果最佳,C 指数分别为 0.819 和 0.712,1 年 AUC 分别为 0.899 和 0.748。

结论

基于 I-MIBG SPECT-CT 的放射组学可准确预测高危神经母细胞瘤诱导缓解后的无事件生存情况。所构建的列线图可实现对高危神经母细胞瘤预后的个体化评估,有助于临床医生优化患者的治疗和随访计划,从而可能提高患者的生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索