Bai Xue, Lu Sen, Song Pei, Jia Zepeng, Gao Zhikai, Peng Tiren, Wang Zhiguo, Jiang Qi, Cui Hong, Tian Weizhi, Feng Rong, Liang Zhiyong, Kang Qin, Yuan Hongkuan
School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China; Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China; Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
J Colloid Interface Sci. 2024 Jun 15;664:716-725. doi: 10.1016/j.jcis.2024.03.073. Epub 2024 Mar 11.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for the development of excellent bifunctional electrocatalysts, which are key functions in clean energy production. The emphasis of this study lies in the rapid design and investigation of 153 MN-graphene (Gra)/ MXene (MNO) electrocatalysts for ORR/OER catalytic activity using machine learning (ML) and density functional theory (DFT). The DFT results indicated that CoN-Gra/TiNO had both good ORR (0.37 V) and OER (0.30 V) overpotentials, while TiN-Gra/MNO and MN-Gra/CrNO had high overpotentials. Our research further indicated orbital spin polarization and d-band centers far from the Fermi energy level, affecting the adsorption energy of oxygen-containing intermediates and thus reducing the catalytic activity. The ML results showed that the gradient boosting regression (GBR) model successfully predicted the overpotentials of the monofunctional catalysts RhN-Gra/TiNO (ORR, 0.39 V) and RuN-Gra/WNO (OER, 0.45 V) as well as the overpotentials of the bifunctional catalyst RuN-Gra/WNO (ORR, 0.39 V; OER, 0.45 V). The symbolic regression (SR) algorithm was used to construct the overpotential descriptors without environmental variable features to accelerate the catalyst screening and shorten the trial-and-error costs from the source, providing a reliable theoretical basis for the experimental synthesis of MXene heterostructures.
氧还原反应(ORR)和析氧反应(OER)对于开发优异的双功能电催化剂至关重要,这是清洁能源生产中的关键功能。本研究的重点在于利用机器学习(ML)和密度泛函理论(DFT)快速设计和研究153种用于ORR/OER催化活性的MN-石墨烯(Gra)/MXene(MNO)电催化剂。DFT结果表明,CoN-Gra/TiNO具有良好的ORR(0.37 V)和OER(0.30 V)过电位,而TiN-Gra/MNO和MN-Gra/CrNO具有较高的过电位。我们的研究进一步表明,轨道自旋极化和远离费米能级的d带中心会影响含氧中间体的吸附能,从而降低催化活性。ML结果表明,梯度提升回归(GBR)模型成功预测了单功能催化剂RhN-Gra/TiNO(ORR,0.39 V)和RuN-Gra/WNO(OER,0.45 V)的过电位以及双功能催化剂RuN-Gra/WNO(ORR,0.39 V;OER,0.45 V)的过电位。使用符号回归(SR)算法构建无环境变量特征的过电位描述符,以加速催化剂筛选并从源头上缩短试错成本,为MXene异质结构的实验合成提供可靠的理论依据。