Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
Waste Manag. 2024 Apr 30;179:245-261. doi: 10.1016/j.wasman.2024.02.030. Epub 2024 Mar 16.
This study explores the extraction of metals from spent mobile phone printed circuit boards (SMPhPCBs) to address environmental and resource depletion concerns. The challenges in metal recovery from SMPhPCBs arise due to their complex composition and high metal content. While previous research has primarily focused on using bio-cyanide, bio-sulfate, and bio-ferric compounds from acidophilic bacteria, the potential of bio-oxalic acid for SMPhPCBs treatment and the alteration of their complex structure has not yet been explored. Additionally, this study suggests evaluating the untapped potential of Aspergillus niger in oxalic acid production through mixed cultures with bacteria, marking a pioneering approach. A unique culture of Bacillus megaterium and A. niger was created, inducing bio-stress by bacterial metabolites, including gluconic acid (2683 mg/l) and live/dead bacterial cells in a medium with glucose deficiency. Results demonstrated reducing sugar consumption and oxalic acid over-production in mixed cultures compared to pure cultures, ranging from 1350 to 4951 mg/l at an initial glucose concentration (IGC) of 10 g/l and 4276 to 7460 mg/l at IGC 20 g/l. This over-production is attributed to proposed fungal signaling mechanisms to bacteria. Metal extraction using organic acids and siderophores at 10 g/l pulp density, 24 h, and 60 °C yielded Mn (100 %), Pt (100 %), Pd (70.7 %), Fe (50.8 %), Co (48.3 %), Al (21.8 %), among others. The final valuable residue containing copper, gold, and silver holds potential for future recycling. The study concludes with XRD and FTIR analyses to assess the bioleaching effect on the bio-leached powder.
本研究探讨从废弃手机印刷电路板(SMPhPCBs)中提取金属,以解决环境和资源枯竭问题。从 SMPhPCBs 中回收金属面临的挑战源于其复杂的成分和高金属含量。虽然之前的研究主要集中在使用嗜酸细菌的生物氰化物、生物硫酸盐和生物铁化合物,但生物草酸处理 SMPhPCBs 及其复杂结构改变的潜力尚未得到探索。此外,本研究建议通过与细菌混合培养来评估黑曲霉在草酸生产中的未开发潜力,这标志着一种开创性的方法。通过在葡萄糖缺乏的培养基中诱导细菌代谢物(包括葡萄糖酸(2683 mg/l)和活菌/死菌细胞),创建了独特的巨大芽孢杆菌和黑曲霉的混合培养物,从而产生生物胁迫。与纯培养物相比,混合培养物中还原糖的消耗和草酸的过度生产有所减少,在初始葡萄糖浓度(IGC)为 10 g/l 时,范围为 1350 至 4951 mg/l,在 IGC 为 20 g/l 时,范围为 4276 至 7460 mg/l。这种过度生产归因于真菌向细菌发出信号的拟议机制。在 10 g/l 纸浆密度、24 小时和 60°C 下使用有机酸和铁载体提取金属,可得到 100%的 Mn、100%的 Pt、70.7%的 Pd、50.8%的 Fe、48.3%的 Co、21.8%的 Al 等。最终含有铜、金和银的有价值残渣具有未来回收的潜力。研究最后进行了 XRD 和 FTIR 分析,以评估生物浸出对生物浸出粉末的影响。