导电磁性纳米线加速了 C1020 碳钢与脱硫弧菌生物膜之间的电子转移。

Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm.

机构信息

Department of Biology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; Environmental Sciences Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA.

出版信息

Sci Total Environ. 2024 May 15;925:171763. doi: 10.1016/j.scitotenv.2024.171763. Epub 2024 Mar 16.

Abstract

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic HS to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 μm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.

摘要

微生物生物膜是微生物影响腐蚀(MIC)的幕后黑手。生物膜中的固定细胞在体积上比悬浮在主体流体中的细胞密集得多,从而提供了局部高浓度的化学物质。更重要的是,生物膜中“电活性”的固定细胞能够利用细胞外供应的电子(例如,来自元素铁),在能量代谢中还原氧化剂,如硫酸盐。直接由厌氧生物膜引起的 MIC 根据其机制分为两种主要类型:细胞外电子转移 MIC(EET-MIC)和代谢物 MIC(M-MIC)。硫酸盐还原菌(SRB)以其腐蚀性而臭名昭著。它们可以在碳钢中引起 EET-MIC,但也可以通过 M-MIC 分泌生物 HS 直接腐蚀其他金属,如 Cu。本研究探讨了使用导电磁性纳米线作为电子介体来加速并因此识别脱硫弧菌引起的 C1020 的 EET-MIC。在 37°C 的 ATCC 1249 培养基中存在 40ppm(w/w)的纳米线,在 7 天孵育后导致失重增加 45%,腐蚀坑深度增加 57%。线性极化电阻和动电位极化的电化学测试支持了失重数据的趋势。这些发现表明,导电磁性纳米线可用于识别 EET-MIC。使用不溶性 2μm 长纳米线证明了电子转移过程的细胞外部分是碳钢中 SRB MIC 的瓶颈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索