Suppr超能文献

过表达 GLUTAMINE SYNTHETASE 1;2 在高铵条件下维持碳氮平衡,并导致杂种杨对铵毒性的耐受性增加。

Overexpressing GLUTAMINE SYNTHETASE 1;2 maintains carbon and nitrogen balance under high-ammonium conditions and results in increased tolerance to ammonium toxicity in hybrid poplar.

机构信息

State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.

College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China.

出版信息

J Exp Bot. 2024 Jul 10;75(13):4052-4073. doi: 10.1093/jxb/erae124.

Abstract

The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.

摘要

谷氨酰胺合成酶/谷氨酸合酶(GS/GOGAT)循环在植物的氮代谢、生长、发育和抗逆性中发挥重要作用。过量的铵(NH4+)会限制生长,但 GS 可以帮助减轻其毒性。在这项研究中,杂种白杨(Populus alba × P. tremula var. glandulosa)的 84K 模型克隆在高 NH4+胁迫下生物量积累减少和叶片黄化,在过表达 GLUTAMINE SYNTHETASE 1;2(GS1;2-OE)的转基因系中表现出较轻的症状,而在 RNAi 系(GS1;2-RNAi)中表现出更严重的症状。与野生型相比,GS1;2-OE 系在高 NH4+胁迫下具有更高的 GS 和 GOGAT 活性以及更高的游离氨基酸、可溶性蛋白、总氮和叶绿素含量,而 GS1;2-RNAi 系的抗氧化和 NH4+同化能力降低。在胁迫下,过表达系的根和叶中的总 C 含量和 C/N 比更高,各种氨基酸和糖醇的含量增加,而碳水化合物的含量降低。在高 NH4+胁迫下,过表达系根中与氨基酸生物合成、蔗糖和淀粉降解、半乳糖代谢和抗氧化系统相关的基因显著上调。因此,GS1;2 的过表达影响了高 NH4+胁迫下的碳和氨基酸代谢途径,有助于维持 C 和 N 代谢的平衡并减轻毒性症状。通过遗传工程修饰 GS/GOGAT 循环是提高栽培树木 NH4+耐受性的一种潜在策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验