Celiberti Lorenzo, Fiore Mosca Dario, Allodi Giuseppe, Pourovskii Leonid V, Tassetti Anna, Forino Paola Caterina, Cong Rong, Garcia Erick, Tran Phuong M, De Renzi Roberto, Woodward Patrick M, Mitrović Vesna F, Sanna Samuele, Franchini Cesare
Faculty of Physics and Center for Computational Materials Science, University of Vienna, 1090, Vienna, Austria.
Department of Physics and Astronomy, Università di Bologna, 40127, Bologna, Italy.
Nat Commun. 2024 Mar 18;15(1):2429. doi: 10.1038/s41467-024-46621-0.
Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular 3d transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in 5d TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator BaNaCaOsO (0 < x < 1), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os 5d spin-orbital J = 3/2 levels, characteristic of the parent compound BaNaOsO (BNOO), into a bipolaron 5d J = 2 manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from d BNOO to d BaCaOsO (BCOO).
极化子和自旋轨道(SO)耦合是不同的量子效应,在电荷输运和自旋轨道电子学中起着关键作用。极化子源于强电子-声子相互作用,在具有电子局域化的可极化材料中普遍存在,特别是在3d过渡金属氧化物(TMO)中。另一方面,自旋和轨道角动量之间的相对论耦合在含有重原子的晶格中很显著,并在5d TMO中出现,其中电子在空间上是离域的。在这里,我们结合从头算计算和磁性测量,表明这两种看似相互排斥的相互作用在电子掺杂的SO耦合莫特绝缘体BaNaCaOsO(0 < x < 1)中相互纠缠,揭示了自旋轨道双极化子的形成。由 Jahn-Teller 晶格活性所青睐的极化子电荷俘获,将母体化合物BaNaOsO(BNOO)特有的Os 5d自旋轨道J = 3/2能级转化为双极化子5d J = 2多重态,导致在单相材料中不同J有效态的共存。随着掺杂增加双极化子逐渐增多,产生了稳健的能隙态,即使在超高掺杂时也能防止向金属相的转变,从而在从d BNOO到d BaCaOsO(BCOO)的整个掺杂范围内保持莫特能隙。