Suppr超能文献

通过分子锚定和离子传输泵送实现无枝晶锌金属阳极

Achieving Dendrite-Free Zinc Metal Anodes via Molecule Anchoring and lon-Transport Pumping.

作者信息

He Zhongqian, Yu Huaming, Chen Dongping, Ni Xuyan, Yan Chunshuang, Lv Chade, Chen Yuejiao

机构信息

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.

出版信息

Chemistry. 2024 May 23;30(29):e202400567. doi: 10.1002/chem.202400567. Epub 2024 Apr 12.

Abstract

The potential for scale-up application has been acknowledged by researchers for rechargeable aqueous zinc-ion batteries (ZIBs). Nonetheless, the progress of the development is significantly impeded due to the instability of the interface between the zinc anode and electrolyte. Herein, efficient and environmentally benign valine (Val) were introduced as aqueous electrolyte additive to stabilize the electrode/electrolyte interface (EEI) via functional groups in additive molecules, thus achieving reversible dendrite-free zinc anode. The amino groups present in Val molecules have a strong ability to adsorb on the surface of zinc metal, enabling the construction of anchored molecular layer on the surface of zinc anodes. The strongly polar carboxyl groups in Val molecules can act as ion-transport pumps to capture zinc ions in the electric double layer (EDL) through coordination chemistry. Therefore, this reconstructed EEI could modulate the zinc ion flux and simultaneously suppress side reactions and dendritic growth of Zn. Consequently, a long stable cycling up to 1400 h at a high current density of 20 mA cm is achieved. Additionally, Zn//VO full cell with Val additive exhibit enhanced cyclability, retaining 77 % capacity after 3000 cycles, displaying significant potential in promoting the commercialization of ZIBs.

摘要

可充电水系锌离子电池(ZIBs)扩大应用的潜力已得到研究人员的认可。尽管如此,由于锌负极与电解质之间界面的不稳定性,其发展进程受到了显著阻碍。在此,引入了高效且环境友好的缬氨酸(Val)作为水系电解质添加剂,通过添加剂分子中的官能团来稳定电极/电解质界面(EEI),从而实现可逆的无枝晶锌负极。Val分子中存在的氨基具有很强的吸附在锌金属表面的能力,能够在锌负极表面构建锚定分子层。Val分子中强极性的羧基可作为离子传输泵,通过配位化学捕获双电层(EDL)中的锌离子。因此,这种重构的EEI可以调节锌离子通量,同时抑制锌的副反应和枝晶生长。结果,在20 mA cm的高电流密度下实现了长达1400 h的长期稳定循环。此外,添加Val的Zn//VO全电池表现出增强的循环性能,在3000次循环后仍保留77%的容量,在推动ZIBs商业化方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验