Suppr超能文献

双功能 MNPs@UIO-66-Arg 核壳卫星纳米复合材料用于富集磷酸肽。

Bifunctional MNPs@UIO-66-Arg core-shell-satellite nanocomposites for enrichment of phosphopeptides.

机构信息

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China.

Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.

出版信息

Mikrochim Acta. 2024 Mar 19;191(4):211. doi: 10.1007/s00604-024-06177-8.

Abstract

A facile and mild method based on self-assembled lysozyme (LYZ) to fabricate bifunctional MNPs@UIO-66-Arg core-shell-satellite nanocomposites (CSSNCs) is reported for the high-efficiency enrichment of phosphopeptides. Under physiological conditions, LYZ rapidly self-assembled into a robust coating on FeO@SiO magnetic nanoparticles (MNPs) with abundant surface functional groups, which effectively mediate heterogeneous nucleation and growth of UIO-66 nanocrystals. Well-defined MNPs@UIO-66 CSSNCs with stacked pores, showing high specific surface area (333.65 m g) and low mass transfer resistance, were successfully fabricated by fine-tuning of the reaction conditions including reaction time and acetic acid content. Furthermore, the UIO-66 shells were further modified with arginine to obtain bifunctional MNPs@UIO-66-Arg CSSNCs. Thanks to the unique morphology and synergistic effect of Zr-O clusters and guanidine groups, the bifunctional MNPs@UIO-66-Arg CSSNCs exhibited outstanding enrichment performance for phosphopeptides, delivering a low limit of detection (0.1 fmol), high selectivity (β-casein/BSA, mass ratio 1:2000), and good capture capacity (120 mg g). The mechanism for phosphopeptides capture may attribute to the hydrogen bonds, electrostatic interactions, and Zr-O-P bonds between phosphate groups in peptides and guanidyl/Zr-O clusters on bifunctional MNPs@UIO-66-Arg CSSNCs. In addition, the small stacking pores on the core-shell-satellite architecture may selectively capture phosphopeptides with low molecular weight, eliminating interference of other large molecular proteins in complex biological samples.

摘要

一种基于溶菌酶(LYZ)自组装的简便温和方法被报道用于制备双功能 MNPs@UIO-66-Arg 核壳卫星纳米复合材料(CSSNCs),以实现高效地富集磷酸肽。在生理条件下,LYZ 迅速自组装在具有丰富表面官能团的 FeO@SiO 磁性纳米颗粒(MNPs)上,形成坚固的涂层,有效地介导 UIO-66 纳米晶体的异质成核和生长。通过精细调控反应条件(包括反应时间和乙酸含量),成功制备了具有堆叠孔的具有明确形貌的 MNPs@UIO-66 CSSNCs,其具有高比表面积(333.65 m g)和低传质阻力。此外,UIO-66 壳进一步用精氨酸进行修饰,得到双功能 MNPs@UIO-66-Arg CSSNCs。由于 Zr-O 簇和胍基的独特形态和协同效应,双功能 MNPs@UIO-66-Arg CSSNCs 对磷酸肽表现出优异的富集性能,检测限低至 0.1 fmol,选择性高(β-酪蛋白/BSA,质量比 1:2000),捕获容量好(120 mg g)。磷酸肽的捕获机制可能归因于肽中磷酸基团与双功能 MNPs@UIO-66-Arg CSSNCs 上的胍基/Zr-O 簇之间的氢键、静电相互作用和 Zr-O-P 键。此外,核壳卫星结构上的小堆叠孔可能选择性地捕获低分子量的磷酸肽,消除复杂生物样品中其他大分子蛋白质的干扰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验