Jonidi Shariatzadeh Farinaz, Logsetty Sarvesh, Liu Song
Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
Departments of Surgery and Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada.
ACS Appl Bio Mater. 2024 Apr 15;7(4):2378-2388. doi: 10.1021/acsabm.4c00038. Epub 2024 Mar 19.
Rapid detection of bacterial presence in skin wounds is crucial to prevent the transition from acute to chronic wounds and the onset of systemic infections. Current methods for detecting infections, particularly at low concentrations (<1.0 × 10 CFU/cm), often require complex technologies and direct sampling, which can be invasive and time-consuming. Addressing this gap, we introduce a colorimetric nanofibrous biosensor enabling real-time monitoring of bacterial concentrations in wounds. This biosensor employs a colorimetric hemicyanine dye (HCy) probe, which changes color in response to bacterial lipase, a common secretion in infected wounds. To enhance the biosensor's sensitivity, we incorporated two key materials science strategies: aligning the nanofibers to promote efficient bacterial attachment and localization and integrating Tween 80, a surfactant, within the nanofiber matrix. This combination of physical and chemical cues results in a notable increase in lipase activity. The cross-aligned core-shell nanofibers, embedded with Tween 80 and HCy, demonstrate an immediate and distinct color change when exposed to as low as 3.0 × 10 CFU/cm of common pathogens such as and MRSA. Significantly, the presence of Tween 80 amplifies the colorimetric response, making visual detection more straightforward and four times more pronounced. Our nanobiosensor design facilitates the detection of low-concentration bacterial infections without the need to remove wound dressings. This advancement marks a significant step forward in real-time wound monitoring, offering a practical tool for the early detection of clinical bacterial infections.
快速检测皮肤伤口中的细菌存在对于防止急性伤口转变为慢性伤口以及全身性感染的发生至关重要。目前检测感染的方法,尤其是在低浓度(<1.0×10 CFU/cm)时,通常需要复杂的技术和直接采样,这可能具有侵入性且耗时。为了填补这一空白,我们引入了一种比色纳米纤维生物传感器,能够实时监测伤口中的细菌浓度。这种生物传感器采用了一种比色半菁染料(HCy)探针,它会因细菌脂肪酶(感染伤口中常见的一种分泌物)而变色。为了提高生物传感器的灵敏度,我们采用了两种关键的材料科学策略:使纳米纤维排列以促进细菌的有效附着和定位,并将表面活性剂吐温80整合到纳米纤维基质中。这种物理和化学线索的结合导致脂肪酶活性显著增加。嵌入吐温80和HCy的交叉排列核壳纳米纤维,在暴露于低至3.0×10 CFU/cm的常见病原体(如 和耐甲氧西林金黄色葡萄球菌)时,会立即出现明显的颜色变化。值得注意的是,吐温80的存在增强了比色响应,使视觉检测更加直接,且明显增强了四倍。我们的纳米生物传感器设计便于检测低浓度细菌感染,无需去除伤口敷料。这一进展标志着实时伤口监测向前迈出了重要一步,为临床细菌感染的早期检测提供了一种实用工具。