Suppr超能文献

利用图表示学习变量增强晶体成核的采样

Enhanced Sampling of Crystal Nucleation with Graph Representation Learnt Variables.

作者信息

Zou Ziyue, Tiwary Pratyush

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States.

Institute for Physical Science and Technology, University of Maryland, College Park 20742, Maryland, United States.

出版信息

J Phys Chem B. 2024 Mar 28;128(12):3037-3045. doi: 10.1021/acs.jpcb.4c00080. Epub 2024 Mar 19.

Abstract

In this study, we present a graph neural network (GNN)-based learning approach using an autoencoder setup to derive low-dimensional variables from features observed in experimental crystal structures. These variables are then biased in enhanced sampling to observe state-to-state transitions and reliable thermodynamic weights. In our approach, we used simple convolution and pooling methods. To verify the effectiveness of our protocol, we examined the nucleation of various allotropes and polymorphs of iron and glycine in their molten states. Our graph latent variables, when biased in well-tempered metadynamics, consistently show transitions between states and achieve accurate thermodynamic rankings in agreement with experiments, both of which are indicators of dependable sampling. This underscores the strength and promise of our GNN variables for improved sampling. The protocol shown here should be applicable for other systems and other sampling methods.

摘要

在本研究中,我们提出了一种基于图神经网络(GNN)的学习方法,该方法使用自动编码器设置从实验晶体结构中观察到的特征中导出低维变量。然后,这些变量在增强采样中产生偏差,以观察状态到状态的转变以及可靠的热力学权重。在我们的方法中,我们使用了简单的卷积和池化方法。为了验证我们方案的有效性,我们研究了铁和甘氨酸在熔融状态下各种同素异形体和多晶型物的成核过程。我们的图潜在变量在加权平均势动力学中产生偏差时,始终显示出状态之间的转变,并与实验一致地实现准确的热力学排序,这两者都是可靠采样的指标。这突出了我们的GNN变量在改进采样方面的优势和前景。此处展示的方案应适用于其他系统和其他采样方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验