Suppr超能文献

用于将生物质衍生的2-甲基四氢呋喃高效转化为戊二烯的双金属铝和铌掺杂MCM-41

Bimetallic Aluminum- and Niobium-Doped MCM-41 for Efficient Conversion of Biomass-Derived 2-Methyltetrahydrofuran to Pentadienes.

作者信息

Fan Mengtian, Xu Shaojun, An Bing, Sheveleva Alena M, Betts Alexander, Hurd Joseph, Zhu Zhaodong, He Meng, Iuga Dinu, Lin Longfei, Kang Xinchen, Parlett Christopher M A, Tuna Floriana, McInnes Eric J L, Keenan Luke L, Lee Daniel, Attfield Martin P, Yang Sihai

机构信息

Department of Chemistry University of Manchester Manchester M13 9PL UK.

Department of Chemical Engineering University of Manchester Manchester M13 9PL UK.

出版信息

Angew Chem Weinheim Bergstr Ger. 2022 Dec 19;134(51):e202212164. doi: 10.1002/ange.202212164. Epub 2022 Nov 17.

Abstract

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of Al and Nb sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed Nb sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.

摘要

从生物质中生产共轭C4 - C5二烯能够实现许多重要聚合物和液体燃料的可持续合成。在此,我们报道了首例双金属(铌、铝)原子掺杂的介孔二氧化硅,记为AlNb - MCM - 41,它能将2 - 甲基四氢呋喃(2 - MTHF)定量转化为戊二烯,选择性高达91%。将铝和铌位点引入AlNb - MCM - 41的骨架中,有效地调节了结构中Lewis酸和Brønsted酸位点的性质和分布。原位X射线吸收、漫反射红外和固体核磁共振光谱共同揭示了吸附在AlNb - MCM - 41上的2 - MTHF转化的分子机制。具体而言,原子分散的铌位点在结合2 - MTHF以驱动转化过程中起重要作用。总体而言,这项研究突出了杂原子介孔固体在制造可再生材料方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c4/10946597/3e3866abd946/ANGE-134-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验