Suppr超能文献

不同激光雷达平台获取的多时相数字地形模型的可比性:地貌影响研究应用中的误差来源与不确定性

Comparability of multi-temporal DTMs derived from different LiDAR platforms: Error sources and uncertainties in the application of geomorphic impact studies.

作者信息

Kamp Nicole, Krenn Paul, Avian Michael, Sass Oliver

机构信息

Institute of Geography and Regional Science University of Graz Graz Austria.

FWF DK Climate Change University of Graz Graz Austria.

出版信息

Earth Surf Process Landf. 2023 May;48(6):1152-1175. doi: 10.1002/esp.5540. Epub 2023 Feb 6.

Abstract

Multi-temporal digital terrain models (DTMs) derived from airborne or uncrewed aerial vehicle (UAV)-borne light detection and ranging (LiDAR) platforms are frequently used tools in geomorphic impact studies. Accurate estimation of mobilized sediments from multi-temporal DTMs is indispensable for hazard assessment. To study volumetric changes in alpine environments it is crucial to identify and discuss different kind of error sources in multi-temporal data. We subdivided errors into those caused by data acquisition, data processing, and spatial properties of the terrain. In terms of the quantification of surface changes, the propagation of errors can lead to high uncertainties. Three alpine catchments with different LiDAR point clouds of different origins (airborne laser scanning [ALS], UAV-borne laser scanning [ULS]), varying point densities, accuracies and qualities were analysed, and used as basis for interpolating DTMs. The workflow was developed in the Schöttlbach area in Styria and later applied to further catchments in Austria. The main aim of the presented work is a comprehensive DTM uncertainty analysis specially designed for geomorphic impact studies, with a resulting uncertainty analysis serving as input for a change detection tool. Our findings reveal that geomorphic impact studies need the careful distinction between actual surface changes and different data uncertainties. ULS combines the benefits of terrestrial laser scanning with all the benefits of ALS. However, the use of ULS data does not necessarily improve the results of the analysis since the high level of detail is not always helpful in geomorphic impact studies. In order to make the different point clouds and DTMs comparable the quality of the ULS point cloud had to be reduced to fit the accuracy of the reference data (older ALS point clouds). Using a point cloud with a high point density with a regular planimetric point spacing and less data gaps, in the best case collected during leaf-off conditions (e.g., cross-flight strategy) turned out to be sufficient for our geomorphic research purposes.

摘要

源自机载或无人机搭载的激光雷达平台的多期数字地形模型(DTM)是地貌影响研究中常用的工具。从多期DTM准确估算搬运沉积物对于灾害评估至关重要。为研究高山环境中的体积变化,识别并讨论多期数据中不同类型的误差源至关重要。我们将误差细分为由数据采集、数据处理以及地形空间属性引起的误差。在地表变化的量化方面,误差传播可能导致高度不确定性。分析了三个具有不同来源(机载激光扫描[ALS]、无人机搭载激光扫描[ULS])、不同点密度、精度和质量的激光雷达点云的高山集水区,并将其用作内插DTM的基础。该工作流程在施蒂利亚州的朔特尔巴赫地区开发,随后应用于奥地利的其他集水区。本文工作的主要目的是专门为地貌影响研究设计的全面DTM不确定性分析,由此产生的不确定性分析作为变化检测工具的输入。我们的研究结果表明,地貌影响研究需要仔细区分实际地表变化和不同的数据不确定性。ULS结合了地面激光扫描的优点和ALS的所有优点。然而,使用ULS数据不一定能改善分析结果,因为高细节水平在地貌影响研究中并不总是有帮助。为使不同的点云和DTM具有可比性,必须降低ULS点云的质量以匹配参考数据(较旧的ALS点云)的精度。使用具有规则平面点间距和较少数据间隙的高点点密度的点云,在最佳情况下于落叶条件下采集(例如,交叉飞行策略),结果证明足以满足我们的地貌研究目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8ac/10946468/d36683ebc39a/ESP-48-1152-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验