Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Oxford Orthopaedic Engineering Centre (OOEC), University of Oxford, Botnar Research Centre, Oxford, United Kingdom.
Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Oxford Orthopaedic Engineering Centre (OOEC), University of Oxford, Botnar Research Centre, Oxford, United Kingdom.
Med Eng Phys. 2024 Mar;125:104119. doi: 10.1016/j.medengphy.2024.104119. Epub 2024 Feb 15.
The cementless Oxford Unicompartmental Knee Replacement (OUKR) tibial component relies on an interference fit to achieve initial fixation. The behaviour at the implant-bone interface is not fully understood and hence modelling of implants using Finite Element (FE) software is challenging. With a goal of exploring alternative implant designs with lower fracture risk and adequate fixation, this study aims to investigate whether optimisation of FE model parameters could accurately reproduce experimental results of a pull-out test which assesses fixation.
Finite element models of implants with three methods of fixation (standard keel, small keel, and peg) in a bone analogue foam block were created, in which implants were modelled using an analytical rigid definition and the foam block was modelled as a homogenous linear isotropic material. The total interference and elastic slip were varied in these models and optimised by comparing simulated and experimental results of pull-out tests for two (standard and peg) implant geometries. Then the optimised interference and elastic slip were validated by comparing simulated and experimental data of a third (small keel) implant geometry.
The optimisation of parameters established an interference of 0.16 mm and an elastic slip of 0.20 mm as most suitable for modelling the experimental force-displacement plots during pull-out. This combination of parameters accurately reproduced the experimental results of the small keel geometry. The maximum pull-out forces from the FE models were consistent with experimental data for each implant design.
This study shows that experimental pull-out tests can be accurately modelled using adjusted interference values and non-linear friction and outlines a method for determining these parameters. This study demonstrates that complex problems in modelling implant behaviour can be addressed with relatively simple models. This can potentially lead to the development of implants with reduced risk of failure.
非骨水泥 Oxford 单髁膝关节置换(OUKR)胫骨部件依靠过盈配合实现初始固定。植入物-骨界面的行为尚不完全清楚,因此使用有限元(FE)软件对植入物进行建模具有挑战性。本研究旨在探索具有更低骨折风险和足够固定的替代植入物设计,目的是研究优化 FE 模型参数是否可以准确再现评估固定的拔出试验的实验结果。
创建了三种固定方式(标准龙骨、小龙骨和销钉)的植入物在骨类似泡沫块中的有限元模型,其中植入物使用分析刚性定义建模,泡沫块建模为均质各向同性材料。在这些模型中改变了总干涉和弹性滑移,并通过比较两种(标准和销钉)植入物几何形状的拔出试验的模拟和实验结果来优化。然后,通过比较小龙骨植入物几何形状的模拟和实验数据来验证优化后的干扰和弹性滑移。
参数的优化确定了 0.16mm 的干涉和 0.20mm 的弹性滑移作为模拟拔出过程中实验力-位移图的最佳参数。该参数组合准确再现了小龙骨几何形状的实验结果。FE 模型的最大拔出力与每种植入物设计的实验数据一致。
本研究表明,实验拔出试验可以通过调整干扰值和非线性摩擦进行准确建模,并概述了确定这些参数的方法。本研究表明,植入物行为建模中的复杂问题可以通过相对简单的模型来解决。这可能导致开发具有降低失败风险的植入物。