文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脂肪注射的机械纯化:细胞产量、细胞生长与脂肪体积维持的关系。

Mechanical Purification of Lipofilling: The Relationship Between Cell Yield, Cell Growth, and Fat Volume Maintenance.

机构信息

Department of Surgical Science, Tor Vergata" University, Via Montpellier 1, 0017300133, Rome, Italy.

Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201, Geneva, Switzerland.

出版信息

Aesthetic Plast Surg. 2024 Jun;48(12):2306-2318. doi: 10.1007/s00266-024-03870-0. Epub 2024 Mar 20.


DOI:10.1007/s00266-024-03870-0
PMID:38509318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11233364/
Abstract

BACKGROUND: The mechanical manipulations of fat tissue represented from centrifugation, filtration, washing, and fragmentation were considered the most effective strategies aiming to obtain purified lipofilling with different impacts both in terms of adipose-derived stem cells amount contained in stromal vascular fraction, and fat volume maintenance. OBJECTIVES: The present work aimed to report results in fat volume maintenance obtained by lipofilling purification based on the combined use of washing and filtration, in a clinical study, and to deeply investigate the adipose-derived stem cells yield and growth capacity of the different stromal vascular fraction extraction techniques with an in vitro approach. METHODS: A preliminary prospective, case-control study was conducted. 20 patients affected by face and breast soft tissue defects were treated with lipofilling and divided into two groups: n = 10 patients (study group) were treated with lipofilling obtained by washing and filtration procedures, while n = 10 (control group) were treated with lipofilling obtained by centrifugation according to the Coleman technique. 6 months after the lipofilling, the volume maintenance percentage was analyzed by clinical picture and magnetic resonance imaging comparisons. Additionally, extracted stromal vascular fraction cells were also in vitro analyzed in terms of adipose-derived stem cell yield and growth capacity. RESULTS: A 69% ± 5.0% maintenance of fat volume after 6 months was observed in the study group, compared with 44% ± 5.5% in the control group. Moreover, the cellular yield of the control group resulted in 267,000 ± 94,107 adipose-derived stem cells/mL, while the study group resulted in 528,895 ± 115,853 adipose-derived stem cells /mL, with a p-value = 0.1805. Interestingly, the study group showed a fold increase in cell growth of 6758 ± 0.7122, while the control group resulted in 3888 ± 0.3078, with a p < 0.05 (p = 0.0122). CONCLUSIONS: The comparison of both groups indicated that washing and filtration were a better efficient system in lipofilling preparation, compared to centrifugation, both in terms of volume maintenance and adipose-derived stem cell growth ability. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .

摘要

背景:离心、过滤、洗涤和破碎等机械操作被认为是最有效的策略,可以获得不同影响的纯化脂肪填充,包括基质血管成分中所含脂肪源性干细胞的数量和脂肪体积的维持。

目的:本研究旨在报告基于洗涤和过滤联合使用的脂肪填充净化在临床研究中获得的脂肪体积维持效果,并通过体外方法深入研究不同基质血管成分提取技术的脂肪源性干细胞产量和生长能力。

方法:进行了一项初步的前瞻性病例对照研究。20 名面部和乳房软组织缺损患者接受脂肪填充治疗,并分为两组:n=10 名患者(研究组)接受洗涤和过滤程序获得的脂肪填充治疗,n=10 名(对照组)接受根据 Coleman 技术的离心获得的脂肪填充治疗。脂肪填充治疗 6 个月后,通过临床图片和磁共振成像比较分析体积维持百分比。此外,还对提取的基质血管成分细胞进行了体外分析,以评估脂肪源性干细胞的产量和生长能力。

结果:研究组脂肪体积 6 个月后维持率为 69%±5.0%,对照组为 44%±5.5%。此外,对照组的细胞产量为 267,000±94,107 个脂肪源性干细胞/mL,而研究组为 528,895±115,853 个脂肪源性干细胞/mL,p 值为 0.1805。有趣的是,研究组细胞生长倍数为 6758±0.7122,而对照组为 3888±0.3078,p<0.05(p=0.0122)。

结论:与离心相比,洗涤和过滤在脂肪填充制备方面是一种更有效的系统,无论是在体积维持还是脂肪源性干细胞生长能力方面,都优于离心。

证据水平 III:本杂志要求作者为每篇文章分配一个证据水平。有关这些循证医学评级的完整描述,请参考目录或在线作者指南 http://www.springer.com/00266 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/d0d9cc1c403a/266_2024_3870_Sch3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/ba9faad050b0/266_2024_3870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/f9262867665a/266_2024_3870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/3cafd8f2003b/266_2024_3870_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/456cf168a0f0/266_2024_3870_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/332eb2d34190/266_2024_3870_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/e118744eb355/266_2024_3870_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/178907806df6/266_2024_3870_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/4257058fa083/266_2024_3870_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/251f574370f8/266_2024_3870_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/d0d9cc1c403a/266_2024_3870_Sch3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/ba9faad050b0/266_2024_3870_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/f9262867665a/266_2024_3870_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/3cafd8f2003b/266_2024_3870_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/456cf168a0f0/266_2024_3870_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/332eb2d34190/266_2024_3870_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/e118744eb355/266_2024_3870_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/178907806df6/266_2024_3870_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/4257058fa083/266_2024_3870_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/251f574370f8/266_2024_3870_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7797/11233364/d0d9cc1c403a/266_2024_3870_Sch3_HTML.jpg

相似文献

[1]
Mechanical Purification of Lipofilling: The Relationship Between Cell Yield, Cell Growth, and Fat Volume Maintenance.

Aesthetic Plast Surg. 2024-6

[2]
Mechanical and Enzymatic Digestion of Autologous Fat Grafting (A-FG): Fat Volume Maintenance and AD-SVFs Amount in Comparison.

Aesthetic Plast Surg. 2023-10

[3]
The Effects of Platelet-Rich Plasma and Adipose-Derived Stem Cells on Neovascularization and Fat Graft Survival.

Aesthetic Plast Surg. 2018-2

[4]
From the "Fat Capsule" to the "Fat Belt": Limiting Protective Lipofilling on Irradiated Expanders for Breast Reconstruction to Selective Key Areas.

Aesthetic Plast Surg. 2018-3-19

[5]
Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation.

Int J Mol Sci. 2019-11-2

[6]
Cosmetic Breast Augmentation with Autologous Ex Vivo-Expanded Adipose-Derived Mesenchymal Stem/Stromal Cell (Stemform®)-Enriched Fat Grafts: A Study of the First Twenty-Two Real-World Patients.

Aesthetic Plast Surg. 2024-1

[7]
The Efficacy of Cell-Assisted Lipotransfer Versus Conventional Lipotransfer in Breast Augmentation: A Systematic Review and Meta-Analysis.

Aesthetic Plast Surg. 2021-8

[8]
Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells.

J Plast Reconstr Aesthet Surg. 2013-6-2

[9]
Vacuum-assisted adipose tissue suction technique (VAST) to optimize fat harvesting.

Aesthetic Plast Surg. 2013-5-9

[10]
Fat Necrosis After Autologous Fat Transfer (AFT) to Breast: Comparison of Low-Speed Centrifugation with Sedimentation.

Aesthetic Plast Surg. 2018-12

引用本文的文献

[1]
T-PRP-DAT Gel: A Novel Material Promotes Adipose Tissue Regeneration.

J Cosmet Dermatol. 2025-2

本文引用的文献

[1]
Mechanical and Enzymatic Digestion of Autologous Fat Grafting (A-FG): Fat Volume Maintenance and AD-SVFs Amount in Comparison.

Aesthetic Plast Surg. 2023-10

[2]
Achieving optimal clinical outcomes in autologous fat grafting: A systematic review of processing techniques.

J Plast Reconstr Aesthet Surg. 2023-6

[3]
Tuberous Breast, Deformities, and Asymmetries: A Retrospective Analysis Comparing Fat Grafting Versus Mastopexy and Breast Implants.

Aesthetic Plast Surg. 2023-10

[4]
Titanium-coated polypropylene mesh as innovative bioactive material in conservatives mastectomies and pre-pectoral breast reconstruction.

Bioact Mater. 2021-5-19

[5]
Systematic review: Advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment.

Stem Cell Res Ther. 2021-6-2

[6]
Systematic Review: Adipose-Derived Mesenchymal Stem Cells, Platelet-Rich Plasma and Biomaterials as New Regenerative Strategies in Chronic Skin Wounds and Soft Tissue Defects.

Int J Mol Sci. 2021-2-3

[7]
Regenerative application of stromal vascular fraction cells enhanced fat graft maintenance: clinical assessment in face rejuvenation.

Expert Opin Biol Ther. 2020-12

[8]
Long-Term Survival of Fat Transplants: Controlled Demonstrations.

Aesthetic Plast Surg. 2020-8

[9]
Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration.

Int J Mol Sci. 2020-7-15

[10]
Fat Graft Enhanced With Adipose-Derived Stem Cells in Aesthetic Breast Augmentation: Clinical, Histological, and Instrumental Evaluation.

Aesthet Surg J. 2020-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索