Iqra Tousif, Nadeem Sohail, Ghazwani Hassan Ali, Duraihem Faisal Z, Alzabut Jehad
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.
Department of Mathematics and Sciences, Prince Sultan University, 11586, Riyadh, Saudi Arabia.
Heliyon. 2024 Mar 1;10(6):e26779. doi: 10.1016/j.heliyon.2024.e26779. eCollection 2024 Mar 30.
The study focuses on the instability of local linear convective flow in an incompressible boundary layer caused by a rough rotating disk in a steady MHD flow of viscous nanofluid. Miklavčič and Wang's (Miklavčič and Wang, 2004) [9] MW roughness model are utilized in the presence of MHD of Cu-water nanofluid with enforcement of axial flows. This study will investigate the instability characteristics with the MHD boundary layer flow of nanofluid over a rotating disk and incorporate the effects of axial flow with anisotropic and isotropic surface roughness. The resulting ordinary differential equations (ODEs) are obtained by using von Kàrmàn (Kármán, 1921) [3] similarity transformation on partial differential equations (PDEs). Subsequently, numerical solutions are obtained using the shooting method, specifically the Runge-Kutta technique. Steady-flow profiles for MHD and volume fractions of nanoparticles are analyzed by the partial-slip conditions with surface roughness. Convective instability for stationary modes and neutral stability curves are also obtained and investigated by the formulation of linear stability equations with the MHD of nanofluid. Linear convective growth rates are utilized to analyze the stability of magnetic fields and nanoparticles and to confirm the outcomes of this analysis. Stationary disturbances are also considered in the energy analysis. The investigation indicates the correlation between instability modes Type I and Type II, in the presence of MHD, nanoparticles, and the growth rates of the critical Reynolds number. An integral energy equation enhances comprehension of the fundamental physical mechanisms. The factors contributing to convective instability in the system are clarified using this approach.
该研究聚焦于粘性纳米流体在稳态磁流体动力学(MHD)流动中,由粗糙旋转圆盘引起的不可压缩边界层中局部线性对流流动的不稳定性。在存在轴向流的铜 - 水纳米流体的磁流体动力学情况下,采用了米克拉夫契奇和王(Miklavčič和Wang,2004)[9]的MW粗糙度模型。本研究将研究纳米流体在旋转圆盘上的磁流体动力学边界层流动的不稳定性特征,并纳入轴向流以及各向异性和各向同性表面粗糙度的影响。通过对偏微分方程(PDEs)使用冯·卡门(Kármán,1921)[3]相似变换,得到了由此产生的常微分方程(ODEs)。随后,使用打靶法,特别是龙格 - 库塔技术获得数值解。通过具有表面粗糙度的部分滑移条件分析了磁流体动力学和纳米颗粒体积分数的稳态流动剖面。还通过用纳米流体的磁流体动力学建立线性稳定性方程,获得并研究了驻定模式的对流不稳定性和中性稳定性曲线。利用线性对流增长率来分析磁场和纳米颗粒的稳定性,并确认该分析的结果。在能量分析中也考虑了驻定扰动。研究表明在存在磁流体动力学、纳米颗粒和临界雷诺数增长率的情况下,I型和II型不稳定性模式之间的相关性。一个积分能量方程增强了对基本物理机制的理解。使用这种方法阐明了系统中导致对流不稳定性的因素。