Buzitis Nathan W, Clowers Brian H
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
J Am Soc Mass Spectrom. 2024 Apr 3;35(4):804-813. doi: 10.1021/jasms.4c00057. Epub 2024 Mar 21.
Toward the goal of minimizing construction costs while maintaining high performance, a new, reduced-pressure, drift tube ion mobility system is coupled with an ion trap mass analyzer through a custom ion shuttle. The availability of reduced-pressure ion mobility systems remains limited due to comparatively expensive commercial options and limited shared design features in the open literature. This report details the complete design and benchmarking characteristics of a reduced-pressure ion mobility system. The system is constructed from FR4 PCB electrodes and encased in a PTFE vacuum enclosure with custom torque-tightened couplers to utilize standard KF40 bulkheads. The PTFE enclosure directly minimizes the overall system expenses, and the implementation of threaded brass inserts allows for facile attachments to the vacuum enclosure without damaging the thermoplastic housing. Front and rear ion funnels maximize ion transmission and help mitigate the effects of radial ion diffusion. A custom planar ion shuttle transports ions from the exit of the rear ion funnel into the ion optics of an ion trap mass analyzer. The planar ion shuttle can couple the IM system to any contemporary Thermo Scientific ion trap mass analyzer. Signal stability and ion intensity remain unchanging following the implementation of the planar ion shuttle when compared to the original stacked ring ion guide. The constructed IM system showed resolving powers up to 85 for various small molecules and proteins using the Fourier transform from a ∼1 m drift tube. Recorded mobilities derived from first principles agree with published literature results with an average error of 1.1% and an average error toward literature values using single field calibration of <1.3%.
为了在保持高性能的同时将建造成本降至最低,一种新型的减压漂移管离子迁移率系统通过定制的离子穿梭装置与离子阱质量分析仪相连。由于商业选择相对昂贵且公开文献中共享设计特征有限,减压离子迁移率系统的可用性仍然受限。本报告详细介绍了一种减压离子迁移率系统的完整设计和基准测试特性。该系统由FR4印刷电路板电极构建而成,并封装在一个带有定制扭矩拧紧耦合器的聚四氟乙烯真空外壳中,以使用标准的KF40隔板。聚四氟乙烯外壳直接降低了整个系统的成本,而螺纹黄铜插件的使用使得在不损坏热塑性外壳的情况下方便地连接到真空外壳。前后离子漏斗可最大限度地提高离子传输率,并有助于减轻径向离子扩散的影响。一个定制的平面离子穿梭装置将离子从后离子漏斗的出口传输到离子阱质量分析仪的离子光学系统中。该平面离子穿梭装置可将离子迁移率系统与任何当代赛默飞世尔科技离子阱质量分析仪相连。与原来的堆叠环离子导向器相比,在使用平面离子穿梭装置后,信号稳定性和离子强度保持不变。使用约1米长的漂移管进行傅里叶变换时,构建的离子迁移率系统对各种小分子和蛋白质的分辨率高达85。从第一原理推导得到的记录迁移率与已发表文献结果相符,平均误差为1.1%,使用单场校准相对于文献值的平均误差<1.3%。