Ren Li, Li Yinghui, Li Zi, Lin Xi, Lu Chong, Ding Wenjiang, Zou Jianxin
National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Shanghai Engineering Research Center of Mg Materials and Applications & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Nanomicro Lett. 2024 Mar 21;16(1):160. doi: 10.1007/s40820-024-01375-8.
MgH is a promising high-capacity solid-state hydrogen storage material, while its application is greatly hindered by the high desorption temperature and sluggish kinetics. Herein, intertwined 2D oxygen vacancy-rich VO nanosheets (H-VO) are specifically designed and used as catalysts to improve the hydrogen storage properties of MgH. The as-prepared MgH-H-VO composites exhibit low desorption temperatures (T = 185 °C) with a hydrogen capacity of 6.54 wt%, fast kinetics (E = 84.55 ± 1.37 kJ mol H for desorption), and long cycling stability. Impressively, hydrogen absorption can be achieved at a temperature as low as 30 °C with a capacity of 2.38 wt% within 60 min. Moreover, the composites maintain a capacity retention rate of ~ 99% after 100 cycles at 275 °C. Experimental studies and theoretical calculations demonstrate that the in-situ formed VH/V catalysts, unique 2D structure of H-VO nanosheets, and abundant oxygen vacancies positively contribute to the improved hydrogen sorption properties. Notably, the existence of oxygen vacancies plays a double role, which could not only directly accelerate the hydrogen ab/de-sorption rate of MgH, but also indirectly affect the activity of the catalytic phase VH/V, thereby further boosting the hydrogen storage performance of MgH. This work highlights an oxygen vacancy excited "hydrogen pump" effect of VH/V on the hydrogen sorption of Mg/MgH. The strategy developed here may pave a new way toward the development of oxygen vacancy-rich transition metal oxides catalyzed hydride systems.
氢化镁是一种很有前景的高容量固态储氢材料,但其应用因高脱附温度和缓慢的动力学而受到极大阻碍。在此,特别设计了交织的二维富氧空位VO纳米片(H-VO)并将其用作催化剂,以改善氢化镁的储氢性能。所制备的MgH-H-VO复合材料表现出低脱附温度(T = 185°C),储氢容量为6.54 wt%,快速动力学(脱附时E = 84.55±1.37 kJ mol H)以及长循环稳定性。令人印象深刻的是,在低至30°C的温度下,60分钟内储氢容量可达2.38 wt%。此外,该复合材料在275°C下循环100次后仍保持约99%的容量保持率。实验研究和理论计算表明,原位形成的VH/V催化剂、H-VO纳米片独特的二维结构以及丰富的氧空位对改善氢吸附性能有积极贡献。值得注意的是,氧空位的存在起到了双重作用,它不仅可以直接加速氢化镁的氢吸/脱附速率,还可以间接影响催化相VH/V的活性,从而进一步提升氢化镁的储氢性能。这项工作突出了VH/V对Mg/MgH氢吸附的氧空位激发“氢泵”效应。这里开发的策略可能为富氧空位过渡金属氧化物催化的氢化物体系的发展开辟一条新途径。