Wang Longqian, Wang Pan, Xue Xin, Wang Dan, Shang Huishan, Zhao Yafei, Zhang Bing
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
J Colloid Interface Sci. 2024 Jul;665:88-99. doi: 10.1016/j.jcis.2024.03.109. Epub 2024 Mar 19.
Rational designing efficient transition metal-based multifunctional electrocatalysts is highly desirable for improving the efficiency of hydrogen production from water cracking. Herein, a self-supported three-phase heterostructure electrocatalyst of nickel-cobalt sulfide/nickel phosphide/iron phosphide (CoNiS-NiP-FeP) was prepared by a two-step gas-phase sulfurization/phosphorization strategy. The heterostructure in CoNiS-NiP-FeP provides a favorable interfacial environment for electron transfer and synergistic interaction of multiphase active components, while the introduced electronegative P/S not only serves as a carrier for proton capture in the hydrogen evolution reaction (HER) process but also promotes the metal-electron outflow, which in turn accelerates the generation of high-valent Ni species to enhance the catalytic activity of oxygen evolution reaction (OER) and urea oxidation reaction (UOR). As expected, CoNiS-NiP-FeP reveals excellent multifunctional electrocatalytic properties. An overpotential of 35/215 mV is required to reach 10 mA cm for HER/OER. More encouragingly, a current of 100 mA cm requires only 1.36 V for UOR with CoNiS-NiP-FeP as anode, which is much lower as compared to the OER (1.50 V). Besides, a two-electrode water/urea electrolyzer assembled based on CoNiS-NiP-FeP has a voltage of only 1.59/1.48 V when the system reaches 50 mA cm. This work provides a new idea for the design of energy-efficient water/urea-assisted water-splitting multifunctional catalysts with multi-component heterostructure synergistic interface engineering.
合理设计高效的过渡金属基多功能电催化剂对于提高水裂解制氢效率非常必要。在此,通过两步气相硫化/磷化策略制备了一种自支撑的三相异质结构电催化剂硫化镍钴/磷化镍/磷化铁(CoNiS-NiP-FeP)。CoNiS-NiP-FeP中的异质结构为多相活性组分的电子转移和协同相互作用提供了有利的界面环境,而引入的电负性P/S不仅作为析氢反应(HER)过程中质子捕获的载体,还促进金属电子流出,进而加速高价镍物种的生成,以增强析氧反应(OER)和尿素氧化反应(UOR)的催化活性。正如预期的那样,CoNiS-NiP-FeP展现出优异的多功能电催化性能。HER/OER达到10 mA cm时所需的过电位为35/215 mV。更令人鼓舞的是,以CoNiS-NiP-FeP作为阳极的UOR,电流达到100 mA cm仅需1.36 V,与OER(1.50 V)相比要低得多。此外,基于CoNiS-NiP-FeP组装的双电极水/尿素电解槽在系统达到50 mA cm时电压仅为1.59/1.48 V。这项工作为设计具有多组分异质结构协同界面工程的节能型水/尿素辅助水分解多功能催化剂提供了新思路。