Suppr超能文献

任务驱动的神经网络模型预测本体感受的神经动力学。

Task-driven neural network models predict neural dynamics of proprioception.

机构信息

Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; NeuroX Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA; Shirley Ryan AbilityLab, Chicago, IL 60611, USA.

出版信息

Cell. 2024 Mar 28;187(7):1745-1761.e19. doi: 10.1016/j.cell.2024.02.036. Epub 2024 Mar 21.

Abstract

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.

摘要

本体感觉基于分布的感觉神经元向大脑传递身体的状态。然而,支配本体感觉处理的原则还知之甚少。在这里,我们采用任务驱动的建模方法来研究楔状核(CN)和体感皮层区域 2(S1)中本体感觉神经元的神经编码。我们通过肌肉骨骼建模模拟肌梭信号,并生成一个大规模的运动库,根据 16 个假设训练神经网络,每个假设代表不同的计算目标。我们发现,新兴的、任务优化的内部表示从合成数据中泛化,以预测灵长类动物 CN 和 S1 的神经动力学。旨在预测肢体位置和速度的计算任务最擅长预测两个区域的神经活动。由于任务优化会生成在主动运动中比被动运动中更好地预测神经活动的表示,我们推测在目标导向运动中,CN 和 S1 的神经活动受到自上而下的调制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验