Wojtkiewicz Agnieszka M, Oleksy Gabriela, Malinowska Magdalena A, Janeczko Tomasz
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland.
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland.
J Steroid Biochem Mol Biol. 2024 Jul;241:106513. doi: 10.1016/j.jsbmb.2024.106513. Epub 2024 Mar 21.
In this study, we applied AcmB2, sourced from Sterolibacterium denitrificans, to catalyze the oxidative dehydrogenation of 3-ketolupeol (lupenone), a derivative of lupeol, triterpene obtained from birch bark. This enzymatic Δ-dehydrogenation catalyzed by AcmB2 yielded glochidone, a bioactive compound frequently obtained from medicinal plants like Salvia trichoclada and Maytenus boria. Glochidone is known for its broad biological activities, including antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic as well as acetylcholinesterase inhibition. Our research demonstrates >99% conversion efficiency with 100% regioselectivity of the reaction. The effective conversion to glochidone employed an electron acceptor e.g., potassium hexacyanoferrate III, in mild, environmentally friendly conditions: 8-16% 2-hydroxypropyl-β-cyclodextrin, and 2-3% 2-methoxyethanol. AcmB2 reaction optimum was determined at pH 8.0 and 30 °C. Enzyme's biochemical attributes such as electron acceptor type, concentration and steroid substrate specificity were investigated. Among 4-, 5- and 6-ring steroid derivatives androst-4-en-3,17-dione and testosterone propionate were determined as the best substrates of AcmB2. Δ-Dehydrogenation of substrates such as lupenone, diosgenone and 3-ketopetromyzonol was confirmed. We have assessed the antioxidant and rejuvenating characteristics of glochidone as an active component in formulations, considering its precursors, lupeol, and lupenone as well. Glochidone exhibited limited antioxidant and chelating capabilities compared to lupeol and reference compounds. However, it demonstrated robust rejuvenating properties, with a sirtuin induction level of 61.5 ± 1.87%, notably surpassing that of the reference substance, E-resveratrol (45.15 ± 0.09%). Additionally, glochidone displayed 26.5±0.67 and 19.41±0.76% inhibition of elastase and collagenase, respectively. The safety of all studied triterpenes was confirmed on skin reconstructed human Epidermis model. These findings provide valuable insights into the potential applications of glochidone in formulations aimed at addressing skin health concerns. This research presents the first example of an enzyme in the 3-ketosteroid dehydrogenase (KstD) family catalyzing the Δ-dehydrogenation of a pentacyclic triterpene. We also explored structural differences between AcmB, AcmB2, and related KstDs pointing to G52 and P532 as potentially responsible for the unique substrate specificity of AcmB2. Our findings not only highlight the enzyme's capabilities but also present novel enzymatic pathways for bioactive compound synthesis.
在本研究中,我们应用了源自反硝化固醇杆菌的AcmB2,来催化羽扇豆醇(羽扇豆酮)的氧化脱氢反应,羽扇豆醇是一种从桦树皮中提取的三萜类化合物羽扇豆醇的衍生物。由AcmB2催化的这种酶促Δ-脱氢反应生成了格罗奇酮,这是一种常见于药用植物如毛叶鼠尾草和博氏美登木中的生物活性化合物。格罗奇酮以其广泛的生物活性而闻名,包括抗菌、抗真菌、抗炎、抗癌、抗糖尿病以及抑制乙酰胆碱酯酶。我们的研究表明该反应的转化效率>99%,区域选择性为100%。向格罗奇酮的有效转化在温和、环境友好的条件下使用了电子受体,例如铁氰化钾III、8 - 16%的2 - 羟丙基-β-环糊精和2 - 3%的2 - 甲氧基乙醇。AcmB2的反应最适条件确定为pH 8.0和30°C。研究了酶的生化特性,如电子受体类型、浓度和类固醇底物特异性。在4、5和6环类固醇衍生物中,雄甾-4-烯-3,17-二酮和丙酸睾酮被确定为AcmB2的最佳底物。证实了诸如羽扇豆酮、薯蓣皂苷元酮和3 - 酮型七鳃鳗醇等底物的Δ-脱氢反应。我们还评估了格罗奇酮作为制剂中的活性成分的抗氧化和焕肤特性,同时也考虑了其前体羽扇豆醇和羽扇豆酮。与羽扇豆醇和参考化合物相比,格罗奇酮表现出有限的抗氧化和螯合能力。然而,它表现出强大的焕肤特性,其去乙酰化酶诱导水平为61.5±1.87%,明显超过参考物质白藜芦醇(45.15±0.09%)。此外,格罗奇酮对弹性蛋白酶和胶原酶的抑制率分别为26.5±0.67%和19.41±0.76%。在皮肤重建的人类表皮模型上证实了所有研究的三萜类化合物的安全性。这些发现为格罗奇酮在旨在解决皮肤健康问题的制剂中的潜在应用提供了有价值的见解。本研究展示了3 - 酮类固醇脱氢酶(KstD)家族中的一种酶催化五环三萜类化合物的Δ-脱氢反应的首个实例。我们还探索了AcmB、AcmB2和相关KstD之间的结构差异,指出G52和P532可能是AcmB2独特底物特异性的原因。我们的发现不仅突出了该酶的能力,还为生物活性化合物的合成提供了新的酶促途径。