Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN.
Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
Blood Adv. 2024 Jun 11;8(11):2651-2659. doi: 10.1182/bloodadvances.2023011660.
Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH genotype matching can potentially mitigate Rh alloimmunization but comprehensive and accessible genotyping methods are needed. We developed RHtyper as an automated algorithm to predict RH genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, we adapted RHtyper for whole-exome sequencing (WES) data, which are more affordable but challenged by uneven sequencing coverage and exacerbated sequencing read misalignment, resulting in uncertain predictions for (1) RHD zygosity and hybrid alleles, (2) RHCE∗C vs. RHCE∗c alleles, (3) RHD c.1136C>T zygosity, and (4) RHCE c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes using WES data by leveraging machine learning models and improved the concordance of WES with WGS predictions from 90.8% to 97.2% for RHD and 96.3% to 98.2% for RHCE among 396 patients in the Sickle Cell Clinical Research and Intervention Program. In a second validation cohort of 3030 cancer survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study, the optimized RHtyper reached concordance rates between WES and WGS predications to 96.3% for RHD and 94.6% for RHCE. Machine learning improved the accuracy of RH predication using WES data. RHtyper has the potential, once implemented, to provide a precision medicine-based approach to facilitate RH genotype-matched transfusion and improve transfusion safety for patients with SCD. This study used data from clinical trials registered at ClinicalTrials.gov as #NCT02098863 and NCT00760656.
Rh 表型匹配减少了镰状细胞病 (SCD) 患者的同种免疫反应,但由于 RH 遗传多样性无法通过血清学分型来区分,因此仍不能完全消除同种免疫反应。RH 基因型匹配有可能减轻 Rh 同种免疫反应,但需要全面和易于获得的基因分型方法。我们开发了 RHtyper,这是一种使用全基因组测序 (WGS) 数据的自动化算法,能够高度准确地预测 RH 基因型。在这里,我们对 RHtyper 进行了改编,使其适用于全外显子组测序 (WES) 数据,WES 数据更经济实惠,但测序覆盖不均匀和测序读对齐错误加剧,导致 (1)RHD 二倍体和杂合等位基因、(2)RHCE∗C 与 RHCE∗c 等位基因、(3)RHD c.1136C>T 二倍体和 (4)RHCE c.48G>C 二倍体的预测不确定。我们通过利用机器学习模型,优化了 RHtyper,使其能够准确预测 WES 数据中的 RHD 和 RHCE 基因型,从而将 WES 与 WGS 预测的一致性从 396 名 Sickle Cell Clinical Research and Intervention Program 患者的 RHD 中的 90.8%提高到 97.2%,RHCE 中的 96.3%提高到 98.2%。在 St. Jude Lifetime Cohort Study 的 3030 名癌症幸存者 (15.2%为黑人和非裔美国人) 的第二个验证队列中,优化后的 RHtyper 达到了 WES 与 WGS 预测的一致性,RHD 为 96.3%,RHCE 为 94.6%。机器学习提高了使用 WES 数据进行 RH 预测的准确性。一旦实施,RHtyper 有可能为 Rh 基因型匹配输血提供一种精准医疗方法,从而改善 SCD 患者的输血安全性。本研究使用了在 ClinicalTrials.gov 注册的临床试验的数据,#NCT02098863 和 NCT00760656。