Suppr超能文献

运用共同空间模式和卷积神经网络对 EEG 信号进行运动分类。

Applying Common Spatial Pattern and Convolutional Neural Network to Classify Movements via EEG Signals.

机构信息

Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

出版信息

Clin EEG Neurosci. 2024 Jul;55(4):486-495. doi: 10.1177/15500594241234836. Epub 2024 Mar 24.

Abstract

Developing an electroencephalography (EEG)-based brain-computer interface (BCI) system is crucial to enhancing the control of external prostheses by accurately distinguishing various movements through brain signals. This innovation can provide comfortable circumstances for the populace who have movement disabilities. This study combined the most prospering methods used in BCI systems, including one-versus-rest common spatial pattern (OVR-CSP) and convolutional neural network (CNN), to automatically extract features and classify eight different movements of the shoulder, wrist, and elbow via EEG signals. The number of subjects who participated in the experiment was 10, and their EEG signals were recorded while performing movements at fast and slow speeds. We used preprocessing techniques before transforming EEG signals into another space by OVR-CSP, followed by sending signals into the CNN architecture consisting of four convolutional layers. Moreover, we extracted feature vectors after applying OVR-CSP and considered them as inputs to KNN, SVM, and MLP classifiers. Then, the performance of these classifiers was compared with the CNN method. The results demonstrated that the classification of eight movements using the proposed CNN architecture obtained an average accuracy of 97.65% for slow movements and 96.25% for fast movements in the subject-independent model. This method outperformed other classifiers with a substantial difference; ergo, it can be useful in improving BCI systems for better control of prostheses.

摘要

开发基于脑电图(EEG)的脑机接口(BCI)系统对于通过脑信号准确区分各种运动,从而增强对外置假体的控制至关重要。这项创新可以为运动障碍患者提供舒适的环境。本研究结合了 BCI 系统中最先进的方法,包括一对一的公共空间模式(OVR-CSP)和卷积神经网络(CNN),通过 EEG 信号自动提取特征并对肩部、手腕和肘部的 8 种不同运动进行分类。参与实验的受试者人数为 10 人,他们在快速和慢速运动时记录了 EEG 信号。我们在通过 OVR-CSP 将 EEG 信号转换到另一个空间之前使用了预处理技术,然后将信号发送到由四个卷积层组成的 CNN 架构中。此外,我们在应用 OVR-CSP 后提取特征向量,并将其视为 KNN、SVM 和 MLP 分类器的输入。然后,将这些分类器的性能与 CNN 方法进行了比较。结果表明,在独立于受试者的模型中,使用所提出的 CNN 架构对 8 种运动的分类,对于慢速运动的平均准确率为 97.65%,对于快速运动的平均准确率为 96.25%。该方法明显优于其他分类器,因此,它可以用于改善 BCI 系统,以更好地控制假体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验