Suppr超能文献

用于高能量密度可穿戴超级电容器的二氧化锡量子点修饰聚苯胺/石墨烯复合纤维中电子/离子传输的增强

Enhancing Electron/Ion Transport in SnO Quantum Dots Decorated Polyaniline/Graphene Hybrid Fibers for Wearable Supercapacitors with High Energy Density.

作者信息

Jia Xiaoyu, Du Yuan, Xie Fanyu, Li Hongwei, Zhang Mei

机构信息

Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.

出版信息

ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17937-17945. doi: 10.1021/acsami.4c03187. Epub 2024 Mar 26.

Abstract

Fiber-based supercapacitors are the potential power sources in the field of wearable electronics and energy storage textiles due to their unique advantages of electrochemical properties and mechanical flexibility, but achieving high energy density and practical energy supply still presents some challenges. In this study, we reported an approach of microfluidic assisted wet-spinning to fabricate SnO quantum dots encapsulated polyaniline/graphene hybrid fibers (SnO QDs@PGF) by incorporating uniformly polyaniline into graphene fibers and covalently bridging SnO quantum dots. The assembled SnO QDs@PGF fiber-typed flexible supercapacitors exhibit an ultralarge specific areal capacitance of 925 mF cm in PVA/HSO, superior rate capabilities, and capacitance retention of 88% after 8000 cycles, indicating that the SnO QDs@PGF possess near-ideal capacitance properties, efficient ion transfer rate, and good cycling stability. In the EMITFSI/PVDF-HFP electrolyte system, SnO QDs@PGF realize a wide operating potential window of 2.5 V, a specific areal capacitance of 678.4 mF cm, and an energy density of 147.2 μWh cm at 500 μW cm, which can be utilized to power an alarm clock, an electronic timer, and a desk lamp with a requirement of a 3 V battery. The exceptional performance of the SnO QDs@PGF can be attributed to the molecular-level homogeneous composite of granular polyaniline and graphene nanosheets and the interfacial C-O-Sn covalent coupling strategy employed between SnO QDs and PGF. These avenues not only effectively prevent the undesirable restacking of graphene nanosheets but also increase the interlayer electroactive sites, ordered ion diffusion channels, and strong interfacial charge transfer.

摘要

基于纤维的超级电容器因其独特的电化学性能和机械柔韧性优势,在可穿戴电子设备和储能纺织品领域是潜在的电源,但实现高能量密度和实际能量供应仍面临一些挑战。在本研究中,我们报道了一种微流控辅助湿法纺丝方法,通过将聚苯胺均匀地掺入石墨烯纤维中并共价桥接SnO量子点,制备出SnO量子点封装的聚苯胺/石墨烯混合纤维(SnO QDs@PGF)。组装的SnO QDs@PGF纤维型柔性超级电容器在PVA/HSO中表现出925 mF cm的超大比面积电容、优异的倍率性能以及8000次循环后88%的电容保持率,表明SnO QDs@PGF具有近乎理想的电容性能、高效的离子转移速率和良好的循环稳定性。在EMITFSI/PVDF-HFP电解质体系中,SnO QDs@PGF实现了2.5 V的宽工作电位窗口、678.4 mF cm的比面积电容以及在500 μW cm下147.2 μWh cm的能量密度,可用于为需要3 V电池的闹钟、电子定时器和台灯供电。SnO QDs@PGF的优异性能可归因于粒状聚苯胺和石墨烯纳米片的分子水平均匀复合以及SnO量子点与PGF之间采用的界面C-O-Sn共价偶联策略。这些途径不仅有效地防止了石墨烯纳米片的不良重新堆叠,还增加了层间电活性位点、有序的离子扩散通道以及强界面电荷转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验