Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya 60231, Indonesia.
J Colloid Interface Sci. 2024 Jul;665:329-344. doi: 10.1016/j.jcis.2024.03.154. Epub 2024 Mar 23.
We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution. Nanogels with a high hydrogen-bond network density (i.e., a higher content of cytosine moieties) exhibit outstanding long-term structural stability in cell culture substrates containing serum, whereas nanogels with a relatively low hydrogen-bond network density cannot preserve their structural integrity. The nanogels also exhibit numerous unique physicochemical characteristics in aqueous solution, such as a desirable spherical size, high biocompatibility with normal and cancer cells, excellent drug encapsulation capacity, and controlled pH-responsive drug release properties. More importantly, in vitro experiments conclusively indicate the drug-loaded PECH-PEG-Cy nanogels can selectively induce cancer cell-specific apoptosis and cell death via cytosine receptor-mediated endocytosis, without significantly harming normal cells. In contrast, control drug-loaded PECH-PEG nanogels, which lack cytosine moieties in their structure, can only induce cell death in cancer cells through non-specific pathways, which significantly inhibits the induction of apoptosis. This work clearly demonstrates that the cytosine moieties in PECH-PEG-Cy nanogels confer selective affinity for the surface of cancer cells, which enhances their targeted cellular uptake, cytotoxicity, and subsequent induction of programmed cell death in cancer cells.
我们证明了物理交联超分子聚合物中的胞嘧啶部分不仅可以控制药物的递送和释放,还可以特异性靶向癌细胞,从而有效提高化疗的安全性和疗效——因此,它们作为药物递送系统的新发展视角具有重要意义。在此,我们成功开发了由氢键结合的胞嘧啶侧基、亲水性聚乙二醇侧链和疏水性聚环氧氯丙烷主链组成的物理交联超分子聚合物(PECH-PEG-Cy)。聚合物自发自组装成由胞嘧啶诱导的可逆氢键网络结构,并在水溶液中直接形成球形纳米凝胶。具有高氢键网络密度(即,更多的胞嘧啶部分)的纳米凝胶在含有血清的细胞培养基质中表现出出色的长期结构稳定性,而氢键网络密度相对较低的纳米凝胶则无法保持其结构完整性。纳米凝胶在水溶液中还具有许多独特的物理化学特性,例如理想的球形尺寸、与正常和癌细胞的高生物相容性、优异的药物包封能力以及受 pH 控制的药物释放特性。更重要的是,体外实验明确表明,载药的 PECH-PEG-Cy 纳米凝胶可以通过胞嘧啶受体介导的内吞作用选择性诱导癌细胞特异性凋亡和细胞死亡,而不会对正常细胞造成明显伤害。相比之下,缺乏结构中胞嘧啶部分的载药 PECH-PEG 纳米凝胶只能通过非特异性途径在癌细胞中诱导细胞死亡,这显著抑制了凋亡的诱导。这项工作清楚地表明,PECH-PEG-Cy 纳米凝胶中的胞嘧啶部分赋予了癌细胞表面的选择性亲和力,增强了它们的靶向细胞摄取、细胞毒性以及随后在癌细胞中程序性细胞死亡的诱导。